The latest ACPI specification can be found under UEFI specifications page https://uefi.org/specifications The current latest specification is "ACPI Specification Version 6.4 (released January 2021)" (https://uefi.org/specs/ACPI/6.4/) Use the same tactic we used for SMBIOS tables to print ACPI entry point table address: ``` #include #include #include EFI_STATUS EFIAPI UefiMain ( IN EFI_HANDLE ImageHandle, IN EFI_SYSTEM_TABLE *SystemTable ) { for (UINTN i=0; iNumberOfTableEntries; i++) { if (CompareGuid(&(SystemTable->ConfigurationTable[i].VendorGuid), &gEfiAcpi20TableGuid)) { Print(L"ACPI table is placed at %p\n\n", SystemTable->ConfigurationTable[i].VendorTable); } } return EFI_SUCCESS; } ``` Use `dmem` to peak inside ACPI table memory: ``` FS0:\> AcpiInfo.efi ACPI table is placed at 7B7E014 FS0:\> dmem 7B7E014 30 Memory Address 0000000007B7E014 30 Bytes 07B7E014: 52 53 44 20 50 54 52 20-4E 42 4F 43 48 53 20 02 *RSD PTR NBOCHS .* 07B7E024: 74 D0 B7 07 24 00 00 00-E8 D0 B7 07 00 00 00 00 *t...$...........* 07B7E034: 66 00 00 00 AF AF AF AF-AF AF AF AF AF AF AF AF *f...............* FS0:\> ``` The signature `RSP PTR` stands for `Root System Description Pointer (RSDP) Structure` (https://uefi.org/specs/ACPI/6.4/05_ACPI_Software_Programming_Model/ACPI_Software_Programming_Model.html#root-system-description-pointer-rsdp-structure). It contains addresses for `RSDT` and `XSDT` tables. If you calculate offsets, you'll get these addresses from our memory dump: ``` XSDT=0x07B7D0E8 RSDT=0x07B7D074 ``` These tables in turn would cointain pointers to other ACPI tables that actualy contain data useful to OS. According to the spec "platforms provide the RSDT to enable compatibility with ACPI 1.0 operating systems. The XSDT supersedes RSDT functionality". So if you peak these addresses with `dmem`, table contents would be pretty much the same except table signatures. Therefore in our app code we would be parsing XSDT table data. Ok, it's time to write some code. ACPI structures are defined in the following header files: ``` $ ls -1 MdePkg/Include/IndustryStandard/Acpi* MdePkg/Include/IndustryStandard/Acpi.h MdePkg/Include/IndustryStandard/Acpi10.h MdePkg/Include/IndustryStandard/Acpi20.h MdePkg/Include/IndustryStandard/Acpi30.h MdePkg/Include/IndustryStandard/Acpi40.h MdePkg/Include/IndustryStandard/Acpi50.h MdePkg/Include/IndustryStandard/Acpi51.h MdePkg/Include/IndustryStandard/Acpi60.h MdePkg/Include/IndustryStandard/Acpi61.h MdePkg/Include/IndustryStandard/Acpi62.h MdePkg/Include/IndustryStandard/Acpi63.h MdePkg/Include/IndustryStandard/AcpiAml.h ``` Keep in mind that headers for latter standards include headers for earlier standards in itself. ``` Acpi.h > Acpi63.h > Acpi62.h > ... > Acpi10.h > AcpiAml.h ``` Let's look at RSDP structure definition at the most latest ACPI standard header file https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/Acpi63.h ``` /// /// Root System Description Pointer Structure /// typedef struct { UINT64 Signature; UINT8 Checksum; UINT8 OemId[6]; UINT8 Revision; UINT32 RsdtAddress; UINT32 Length; UINT64 XsdtAddress; UINT8 ExtendedChecksum; UINT8 Reserved[3]; } EFI_ACPI_6_3_ROOT_SYSTEM_DESCRIPTION_POINTER; ``` We can use it to print addresses of RSDT/XSDT tables. ``` EFI_ACPI_6_3_ROOT_SYSTEM_DESCRIPTION_POINTER* RSDP = NULL; for (UINTN i=0; iNumberOfTableEntries; i++) { if (CompareGuid(&(SystemTable->ConfigurationTable[i].VendorGuid), &gEfiAcpi20TableGuid)) { Print(L"RSDP table is placed at %p\n\n", SystemTable->ConfigurationTable[i].VendorTable); RSDP = SystemTable->ConfigurationTable[i].VendorTable; } } if (!RSDP) { Print(L"No ACPI2.0 table was found in the system\n"); return EFI_SUCCESS; } if (((CHAR8)((RSDP->Signature >> 0) & 0xFF) != 'R') || ((CHAR8)((RSDP->Signature >> 8) & 0xFF) != 'S') || ((CHAR8)((RSDP->Signature >> 16) & 0xFF) != 'D') || ((CHAR8)((RSDP->Signature >> 24) & 0xFF) != ' ') || ((CHAR8)((RSDP->Signature >> 32) & 0xFF) != 'P') || ((CHAR8)((RSDP->Signature >> 40) & 0xFF) != 'T') || ((CHAR8)((RSDP->Signature >> 48) & 0xFF) != 'R') || ((CHAR8)((RSDP->Signature >> 56) & 0xFF) != ' ')) { Print(L"Error! RSDP signature is not valid!\n"); return EFI_SUCCESS; } Print(L"System description tables:\n"); Print(L"\tRSDT table is placed at address %p\n", RSDP->RsdtAddress); Print(L"\tXSDT table is placed at address %p\n", RSDP->XsdtAddress); Print(L"\n"); ``` In the same file (https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/Acpi63.h) you can find description for XSDT structure: ``` // // Extended System Description Table // No definition needed as it is a common description table header, the same with // EFI_ACPI_DESCRIPTION_HEADER, followed by a variable number of UINT64 table pointers. // ``` The definition for `EFI_ACPI_DESCRIPTION_HEADER` can be found here https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/Acpi10.h: ``` #pragma pack(1) /// /// The common ACPI description table header. This structure prefaces most ACPI tables. /// typedef struct { UINT32 Signature; UINT32 Length; UINT8 Revision; UINT8 Checksum; UINT8 OemId[6]; UINT64 OemTableId; UINT32 OemRevision; UINT32 CreatorId; UINT32 CreatorRevision; } EFI_ACPI_DESCRIPTION_HEADER; #pragma pack() ``` Let's check information about other ACPI tables that are present in the system: ``` EFI_ACPI_DESCRIPTION_HEADER* XSDT = (EFI_ACPI_DESCRIPTION_HEADER*)RSDP->XsdtAddress; if (((CHAR8)((XSDT->Signature >> 0) & 0xFF) != 'X') || ((CHAR8)((XSDT->Signature >> 8) & 0xFF) != 'S') || ((CHAR8)((XSDT->Signature >> 16) & 0xFF) != 'D') || ((CHAR8)((XSDT->Signature >> 24) & 0xFF) != 'T')) { Print(L"Error! XSDT signature is not valid!\n"); return EFI_SUCCESS; } Print(L"Main ACPI tables:\n"); UINT64 offset = sizeof(EFI_ACPI_DESCRIPTION_HEADER); while (offset < XSDT->Length) { UINT64* table_address = (UINT64*)((UINT8*)XSDT + offset); EFI_ACPI_6_3_COMMON_HEADER* table = (EFI_ACPI_6_3_COMMON_HEADER*)(*table_address); Print(L"\t%c%c%c%c table is placed at address %p with length 0x%x\n", (CHAR8)((table->Signature>> 0)&0xFF), (CHAR8)((table->Signature>> 8)&0xFF), (CHAR8)((table->Signature>>16)&0xFF), (CHAR8)((table->Signature>>24)&0xFF), table, table->Length); offset += sizeof(UINT64); } ``` There is one more thing that we need to check. Some ACPI tables can contatin pointers to another ACPI tables. For example Fixed ACPI Description Table (`FADT`) can contain pointers to `DSDT` and `FACS` tables. You can check `FADT` description in ACPI specification (https://uefi.org/specs/ACPI/6.4/05_ACPI_Software_Programming_Model/ACPI_Software_Programming_Model.html#fixed-acpi-description-table-fadt). In edk2 there is a structure for `FADT` in the https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/Acpi63.h file: `EFI_ACPI_6_3_FIXED_ACPI_DESCRIPTION_TABtruct { EFI_ACPI_DESCRIPTION_HEADER Header; UINT32 FirmwareCtrl; UINT32 Dsdt; ... } EFI_ACPI_6_3_FIXED_ACPI_DESCRIPTION_TABLE; `FirmwareCtrl` field contains pointer to the `FACS` table and `Dsdt` field contains pointer to the `DSDT` table. Let's write a `CheckSubtables` function that can check if the ACPI table is FADT and if it is look for its subtables: ``` VOID CheckSubtables(EFI_ACPI_6_3_COMMON_HEADER* table) { if (((CHAR8)((table->Signature >> 0) & 0xFF) == 'F') && ((CHAR8)((table->Signature >> 8) & 0xFF) == 'A') && ((CHAR8)((table->Signature >> 16) & 0xFF) == 'C') && ((CHAR8)((table->Signature >> 24) & 0xFF) == 'P')) { EFI_ACPI_6_3_FIXED_ACPI_DESCRIPTION_TABLE* FADT = (EFI_ACPI_6_3_FIXED_ACPI_DESCRIPTION_TABLE*)table; EFI_ACPI_6_3_COMMON_HEADER* DSDT = (EFI_ACPI_6_3_COMMON_HEADER*)(UINT64)(FADT->Dsdt); if (((CHAR8)((DSDT->Signature >> 0) & 0xFF) == 'D') && ((CHAR8)((DSDT->Signature >> 8) & 0xFF) == 'S') && ((CHAR8)((DSDT->Signature >> 16) & 0xFF) == 'D') && ((CHAR8)((DSDT->Signature >> 24) & 0xFF) == 'T')) { Print(L"\tDSDT table is placed at address %p with length 0x%x\n", DSDT, DSDT->Length); } else { Print(L"\tError! DSDT signature is not valid!\n"); } EFI_ACPI_6_3_COMMON_HEADER* FACS = (EFI_ACPI_6_3_COMMON_HEADER*)(UINT64)(FADT->FirmwareCtrl); if (((CHAR8)((FACS->Signature >> 0) & 0xFF) == 'F') && ((CHAR8)((FACS->Signature >> 8) & 0xFF) == 'A') && ((CHAR8)((FACS->Signature >> 16) & 0xFF) == 'C') && ((CHAR8)((FACS->Signature >> 24) & 0xFF) == 'S')) { Print(L"\tFACS table is placed at address %p with length 0x%x\n", FACS, FACS->Length); } else { Print(L"\tError! FACS signature is not valid!\n"); } } } ``` Call this funtion in our while loop right after the `Print` statement: ``` CheckSubtables(table); ``` If you build our app and execute it under OVMF now you would get: ``` FS0:\> AcpiInfo.efi RSDP table is placed at 7B7E014 System description tables: RSDT table is placed at address 7B7D074 XSDT table is placed at address 7B7D0E8 Main ACPI tables: FACP table is placed at address 7B7A000 with length 0x74 DSDT table is placed at address 7B7B000 with length 0x140B FACS table is placed at address 7BDD000 with length 0x40 APIC table is placed at address 7B79000 with length 0x78 HPET table is placed at address 7B78000 with length 0x38 BGRT table is placed at address 7B77000 with length 0x38 ``` Pretty neat, our system has 4 ACPI data tables: - Fixed ACPI Description Table (`FACP`) - https://uefi.org/specs/ACPI/6.4/05_ACPI_Software_Programming_Model/ACPI_Software_Programming_Model.html#fixed-acpi-description-table-fadt - Differentiated System Description Table (`DSDT`) - https://uefi.org/specs/ACPI/6.4/05_ACPI_Software_Programming_Model/ACPI_Software_Programming_Model.html#differentiated-system-description-table-dsdt - Firmware ACPI Control Structure (`FACS`) - https://uefi.org/specs/ACPI/6.4/05_ACPI_Software_Programming_Model/ACPI_Software_Programming_Model.html#firmware-acpi-control-structure-facs - Multiple APIC Description Table (`MADT`) - https://uefi.org/specs/ACPI/6.4/05_ACPI_Software_Programming_Model/ACPI_Software_Programming_Model.html#multiple-apic-description-table-madt - IA-PC High Precision Event Timer Table (`HPET`) - http://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/software-developers-hpet-spec-1-0a.pdf - This one is not present in ACPI spec, but in a separate document from the page https://uefi.org/acpi - Boot Graphics Resource Table (`BGRT`) - https://uefi.org/specs/ACPI/6.4/05_ACPI_Software_Programming_Model/ACPI_Software_Programming_Model.html#boot-graphics-resource-table-bgrt Keep in mind that as with SMBIOS tables we could use a protocol to get the same data. `GetAcpiTable()` function of a `EFI_ACPI_SDT_PROTOCOL` can help to get the same information. This protocol also is defined by UEFI PI specification. In edk2 it is defined under https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Protocol/AcpiSystemDescriptionTable.h # Use `EFI_SHELL_PROTOCOL` to save table data Now let's try to save ACPI tables from memory to files. To do this we can utilize `EFI_SHELL_PROTOCOL` that is defined in UEFI Shell specification (https://uefi.org/sites/default/files/resources/UEFI_Shell_2_2.pdf). It has many functions for File I/O. The necessary header in edk2 is https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Protocol/Shell.h ``` typedef struct _EFI_SHELL_PROTOCOL { EFI_SHELL_EXECUTE Execute; EFI_SHELL_GET_ENV GetEnv; EFI_SHELL_SET_ENV SetEnv; EFI_SHELL_GET_ALIAS GetAlias; EFI_SHELL_SET_ALIAS SetAlias; EFI_SHELL_GET_HELP_TEXT GetHelpText; EFI_SHELL_GET_DEVICE_PATH_FROM_MAP GetDevicePathFromMap; EFI_SHELL_GET_MAP_FROM_DEVICE_PATH GetMapFromDevicePath; EFI_SHELL_GET_DEVICE_PATH_FROM_FILE_PATH GetDevicePathFromFilePath; EFI_SHELL_GET_FILE_PATH_FROM_DEVICE_PATH GetFilePathFromDevicePath; EFI_SHELL_SET_MAP SetMap; EFI_SHELL_GET_CUR_DIR GetCurDir; EFI_SHELL_SET_CUR_DIR SetCurDir; EFI_SHELL_OPEN_FILE_LIST OpenFileList; EFI_SHELL_FREE_FILE_LIST FreeFileList; EFI_SHELL_REMOVE_DUP_IN_FILE_LIST RemoveDupInFileList; EFI_SHELL_BATCH_IS_ACTIVE BatchIsActive; EFI_SHELL_IS_ROOT_SHELL IsRootShell; EFI_SHELL_ENABLE_PAGE_BREAK EnablePageBreak; EFI_SHELL_DISABLE_PAGE_BREAK DisablePageBreak; EFI_SHELL_GET_PAGE_BREAK GetPageBreak; EFI_SHELL_GET_DEVICE_NAME GetDeviceName; EFI_SHELL_GET_FILE_INFO GetFileInfo; EFI_SHELL_SET_FILE_INFO SetFileInfo; EFI_SHELL_OPEN_FILE_BY_NAME OpenFileByName; EFI_SHELL_CLOSE_FILE CloseFile; EFI_SHELL_CREATE_FILE CreateFile; EFI_SHELL_READ_FILE ReadFile; EFI_SHELL_WRITE_FILE WriteFile; EFI_SHELL_DELETE_FILE DeleteFile; EFI_SHELL_DELETE_FILE_BY_NAME DeleteFileByName; EFI_SHELL_GET_FILE_POSITION GetFilePosition; EFI_SHELL_SET_FILE_POSITION SetFilePosition; EFI_SHELL_FLUSH_FILE FlushFile; EFI_SHELL_FIND_FILES FindFiles; EFI_SHELL_FIND_FILES_IN_DIR FindFilesInDir; EFI_SHELL_GET_FILE_SIZE GetFileSize; EFI_SHELL_OPEN_ROOT OpenRoot; EFI_SHELL_OPEN_ROOT_BY_HANDLE OpenRootByHandle; EFI_EVENT ExecutionBreak; UINT32 MajorVersion; UINT32 MinorVersion; // Added for Shell 2.1 EFI_SHELL_REGISTER_GUID_NAME RegisterGuidName; EFI_SHELL_GET_GUID_NAME GetGuidName; EFI_SHELL_GET_GUID_FROM_NAME GetGuidFromName; EFI_SHELL_GET_ENV_EX GetEnvEx; } EFI_SHELL_PROTOCOL; ``` We will use 3 functions from this protocol `OpenFileByName`/`WriteFile`/`CloseFile`: ``` EFI_SHELL_PROTOCOL.OpenFileByName() Summary: Opens a file or a directory by file name. Prototype: typdef EFI_STATUS (EFIAPI *EFI_SHELL_OPEN_FILE_BY_NAME) ( IN CONST CHAR16 *FileName, OUT SHELL_FILE_HANDLE *FileHandle, IN UINT64 OpenMode ); Parameters: FileName Points to the null-terminated UCS-2 encoded file name. FileHandle On return, points to the file handle. OpenMode File open mode. Description: This function opens the specified file in the specified OpenMode and returns a file handle. ``` ``` EFI_SHELL_PROTOCOL.WriteFile() Summary: Writes data to the file. Prototype: typedef EFI_STATUS (EFIAPI EFI_SHELL_WRITE_FILE)( IN SHELL_FILE_HANDLE FileHandle, IN OUT UINTN *BufferSize, OUT VOID *Buffer ); Parameters: FileHandle The opened file handle for writing. BufferSize On input, size of Buffer. Buffer The buffer in which data to write. Description: This function writes the specified number of bytes to the file at the current file position. The current file position is advanced the actual number of bytes written, which is returned in BufferSize. Partial writes only occur when there has been a data error during the write attempt (such as “volume space full”). The file automatically grows to hold the data, if required. ``` ``` EFI_SHELL_PROTOCOL.CloseFile() Summary: Closes the file handle. Prototype: typedef EFI_STATUS (EFIAPI *EFI_SHELL_CLOSE_FILE)( IN SHELL_FILE_HANDLE FileHandle ); Parameters: FileHandle The file handle to be closed Description This function closes a specified file handle. All “dirty” cached file data is flushed to the device, and the file is closed. In all cases, the handle is closed. ``` Now let's start coding. Add necessary include to our *.c file: ``` #include ``` And necessary protocol guid to our *.inf file: ``` [Protocols] gEfiShellProtocolGuid ``` In our program we need to acquire `EFI_SHELL_PROTOCOL`, this can be done via `LocateProtocol` function from the BootServices: ``` EFI_SHELL_PROTOCOL* ShellProtocol; EFI_STATUS Status = gBS->LocateProtocol( &gEfiShellProtocolGuid, NULL, (VOID **)&ShellProtocol ); if (EFI_ERROR(Status)) { Print(L"Can't open EFI_SHELL_PROTOCOL: %r\n", Status); return EFI_SUCCESS; } ``` We would hide all save file functionality behind our custom `SaveACPITable` function. ``` EFI_STATUS SaveACPITable(UINT32 Signature, // table signature VOID* addr, // table address UINTN size) // table size ``` With it our main while loop would look like this: ``` while (offset < XSDT->Length) { UINT64* table_address = (UINT64*)((UINT8*)XSDT + offset); EFI_ACPI_6_3_COMMON_HEADER* table = (EFI_ACPI_6_3_COMMON_HEADER*)(*table_address); Print(L"\t%c%c%c%c table is placed at address %p with length 0x%x\n", (CHAR8)((table->Signature>> 0)&0xFF), (CHAR8)((table->Signature>> 8)&0xFF), (CHAR8)((table->Signature>>16)&0xFF), (CHAR8)((table->Signature>>24)&0xFF), table, table->Length); SaveACPITable(table->Signature, table, table->Length); CheckSubtables(table); offset += sizeof(UINT64); } ``` Also don't forget to add it to our `CheckSubtables` function to save `DSDT` and `FACS` tables as well. As we would be using `EFI_SHELL_PROTOCOL* ShellProtocol` in every call of our `SaveACPITable` function we can either pass it everywhere as a parameter, or move `ShellProtocol` to global variables. Let's use the second approach in our small program. Now it time to write this `SaveACPITable` function. It would save ACPI table data to the file ".aml". We use `.aml` extension for our files because in ACPI language source files usually have *.asl/*.dsl extension (ACPI Source Language), and compiled files have *.aml extension (ACPI Machine Language): ``` EFI_STATUS SaveACPITable(UINT32 Signature, VOID* addr, UINTN size) { CHAR16 TableName[5]; TableName[0] = (CHAR16)((Signature>> 0)&0xFF); TableName[1] = (CHAR16)((Signature>> 8)&0xFF); TableName[2] = (CHAR16)((Signature>>16)&0xFF); TableName[3] = (CHAR16)((Signature>>24)&0xFF); TableName[4] = 0; CHAR16 FileName[9] = {0}; StrCpyS(FileName, 9, TableName); StrCatS(FileName, 9, L".aml"); SHELL_FILE_HANDLE FileHandle; EFI_STATUS Status = ShellProtocol->OpenFileByName(FileName, &FileHandle, EFI_FILE_MODE_CREATE | EFI_FILE_MODE_WRITE | EFI_FILE_MODE_READ); if (!EFI_ERROR(Status)) { Status = ShellProtocol->WriteFile(FileHandle, &size, addr); if (EFI_ERROR(Status)) { Print(L"Error in WriteFile: %r\n", Status); } Status = ShellProtocol->CloseFile(FileHandle); if (EFI_ERROR(Status)) { Print(L"Error in CloseFile: %r\n", Status); } } else { Print(L"Error in OpenFileByName: %r\n", Status); } return Status; } ``` To create a string with a file name we use `StrCatS` and `StrCpyS` functions. They are safe versions of string concatention/string copy functions similar to their C++ analogs `strcat_s`/`strcpy_s`. You can check out them in a library https://github.com/tianocore/edk2/blob/master/MdePkg/Library/BaseLib/SafeString.c With a help of `EFI_SHELL_PROTOCOL` file operation functions writing data to a file is pretty similar to standard system programming. We open handle, write data to it, and finally close handle. If you build our app and execute it under OVMF you would get 4 files in our `UEFI_disk` shared folder: ``` $ ls -1 ~/UEFI_disk/*.aml /home/kostr/UEFI_disk/apic.aml /home/kostr/UEFI_disk/bgrt.aml /home/kostr/UEFI_disk/dsdt.aml /home/kostr/UEFI_disk/facp.aml /home/kostr/UEFI_disk/facs.aml /home/kostr/UEFI_disk/hpet.aml ``` You can use `iasl` compiler to disassemle ACPI table data: ``` $ iasl -d ~/UEFI_disk/*.aml Intel ACPI Component Architecture ASL+ Optimizing Compiler/Disassembler version 20190509 Copyright (c) 2000 - 2019 Intel Corporation File appears to be binary: found 81 non-ASCII characters, disassembling Binary file appears to be a valid ACPI table, disassembling Input file /home/kostr/UEFI_disk/apic.aml, Length 0x78 (120) bytes ACPI: APIC 0x0000000000000000 000078 (v01 BOCHS BXPCAPIC 00000001 BXPC 00000001) Acpi Data Table [APIC] decoded Formatted output: /home/kostr/UEFI_disk/apic.dsl - 4939 bytes File appears to be binary: found 31 non-ASCII characters, disassembling Binary file appears to be a valid ACPI table, disassembling Input file /home/kostr/UEFI_disk/bgrt.aml, Length 0x38 (56) bytes ACPI: BGRT 0x0000000000000000 000038 (v01 INTEL EDK2 00000002 01000013) Acpi Data Table [BGRT] decoded Formatted output: /home/kostr/UEFI_disk/bgrt.dsl - 1632 bytes File appears to be binary: found 1630 non-ASCII characters, disassembling Binary file appears to be a valid ACPI table, disassembling Input file /home/kostr/UEFI_disk/dsdt.aml, Length 0x140B (5131) bytes ACPI: DSDT 0x0000000000000000 00140B (v01 BOCHS BXPCDSDT 00000001 BXPC 00000001) Pass 1 parse of [DSDT] Pass 2 parse of [DSDT] Parsing Deferred Opcodes (Methods/Buffers/Packages/Regions) Parsing completed Disassembly completed ASL Output: /home/kostr/UEFI_disk/dsdt.dsl - 43444 bytes File appears to be binary: found 91 non-ASCII characters, disassembling Binary file appears to be a valid ACPI table, disassembling Input file /home/kostr/UEFI_disk/facp.aml, Length 0x74 (116) bytes ACPI: FACP 0x0000000000000000 000074 (v01 BOCHS BXPCFACP 00000001 BXPC 00000001) Acpi Data Table [FACP] decoded Formatted output: /home/kostr/UEFI_disk/facp.dsl - 4896 bytes File appears to be binary: found 59 non-ASCII characters, disassembling Binary file appears to be a valid ACPI table, disassembling Input file /home/kostr/UEFI_disk/facs.aml, Length 0x40 (64) bytes ACPI: FACS 0x0000000000000000 000040 Acpi Data Table [FACS] decoded Formatted output: /home/kostr/UEFI_disk/facs.dsl - 1394 bytes File appears to be binary: found 33 non-ASCII characters, disassembling Binary file appears to be a valid ACPI table, disassembling Input file /home/kostr/UEFI_disk/hpet.aml, Length 0x38 (56) bytes ACPI: HPET 0x0000000000000000 000038 (v01 BOCHS BXPCHPET 00000001 BXPC 00000001) Acpi Data Table [HPET] decoded Formatted output: /home/kostr/UEFI_disk/hpet.dsl - 1891 bytes ``` Now you have *.dsl files in the same `UEFI_disk` shared folder. For example here is a content for `APIC` table: ``` $ cat ~/UEFI_disk/apic.dsl /* * Intel ACPI Component Architecture * AML/ASL+ Disassembler version 20190509 (64-bit version) * Copyright (c) 2000 - 2019 Intel Corporation * * Disassembly of /home/kostr/UEFI_disk/apic.aml, Sat Jul 3 00:09:16 2021 * * ACPI Data Table [APIC] * * Format: [HexOffset DecimalOffset ByteLength] FieldName : FieldValue */ [000h 0000 4] Signature : "APIC" [Multiple APIC Description Table (MADT)] [004h 0004 4] Table Length : 00000078 [008h 0008 1] Revision : 01 [009h 0009 1] Checksum : ED [00Ah 0010 6] Oem ID : "BOCHS " [010h 0016 8] Oem Table ID : "BXPCAPIC" [018h 0024 4] Oem Revision : 00000001 [01Ch 0028 4] Asl Compiler ID : "BXPC" [020h 0032 4] Asl Compiler Revision : 00000001 [024h 0036 4] Local Apic Address : FEE00000 [028h 0040 4] Flags (decoded below) : 00000001 PC-AT Compatibility : 1 [02Ch 0044 1] Subtable Type : 00 [Processor Local APIC] [02Dh 0045 1] Length : 08 [02Eh 0046 1] Processor ID : 00 [02Fh 0047 1] Local Apic ID : 00 [030h 0048 4] Flags (decoded below) : 00000001 Processor Enabled : 1 Runtime Online Capable : 0 [034h 0052 1] Subtable Type : 01 [I/O APIC] [035h 0053 1] Length : 0C [036h 0054 1] I/O Apic ID : 00 [037h 0055 1] Reserved : 00 [038h 0056 4] Address : FEC00000 [03Ch 0060 4] Interrupt : 00000000 [040h 0064 1] Subtable Type : 02 [Interrupt Source Override] [041h 0065 1] Length : 0A [042h 0066 1] Bus : 00 [043h 0067 1] Source : 00 [044h 0068 4] Interrupt : 00000002 [048h 0072 2] Flags (decoded below) : 0000 Polarity : 0 Trigger Mode : 0 [04Ah 0074 1] Subtable Type : 02 [Interrupt Source Override] [04Bh 0075 1] Length : 0A [04Ch 0076 1] Bus : 00 [04Dh 0077 1] Source : 05 [04Eh 0078 4] Interrupt : 00000005 [052h 0082 2] Flags (decoded below) : 000D Polarity : 1 Trigger Mode : 3 [054h 0084 1] Subtable Type : 02 [Interrupt Source Override] [055h 0085 1] Length : 0A [056h 0086 1] Bus : 00 [057h 0087 1] Source : 09 [058h 0088 4] Interrupt : 00000009 [05Ch 0092 2] Flags (decoded below) : 000D Polarity : 1 Trigger Mode : 3 [05Eh 0094 1] Subtable Type : 02 [Interrupt Source Override] [05Fh 0095 1] Length : 0A [060h 0096 1] Bus : 00 [061h 0097 1] Source : 0A [062h 0098 4] Interrupt : 0000000A [066h 0102 2] Flags (decoded below) : 000D Polarity : 1 Trigger Mode : 3 [068h 0104 1] Subtable Type : 02 [Interrupt Source Override] [069h 0105 1] Length : 0A [06Ah 0106 1] Bus : 00 [06Bh 0107 1] Source : 0B [06Ch 0108 4] Interrupt : 0000000B [070h 0112 2] Flags (decoded below) : 000D Polarity : 1 Trigger Mode : 3 [072h 0114 1] Subtable Type : 04 [Local APIC NMI] [073h 0115 1] Length : 06 [074h 0116 1] Processor ID : FF [075h 0117 2] Flags (decoded below) : 0000 Polarity : 0 Trigger Mode : 0 [077h 0119 1] Interrupt Input LINT : 01 Raw Table Data: Length 120 (0x78) 0000: 41 50 49 43 78 00 00 00 01 ED 42 4F 43 48 53 20 // APICx.....BOCHS 0010: 42 58 50 43 41 50 49 43 01 00 00 00 42 58 50 43 // BXPCAPIC....BXPC 0020: 01 00 00 00 00 00 E0 FE 01 00 00 00 00 08 00 00 // ................ 0030: 01 00 00 00 01 0C 00 00 00 00 C0 FE 00 00 00 00 // ................ 0040: 02 0A 00 00 02 00 00 00 00 00 02 0A 00 05 05 00 // ................ 0050: 00 00 0D 00 02 0A 00 09 09 00 00 00 0D 00 02 0A // ................ 0060: 00 0A 0A 00 00 00 0D 00 02 0A 00 0B 0B 00 00 00 // ................ 0070: 0D 00 04 06 FF 00 00 01 // ........ ```