In this lesson we would try to list OptionROMs that are present in the PCI devices in our system. # Theory Some PCI devices like graphic cards require additional 'drivers' to work at the BIOS stage. But BIOS is not an OS, it can't have all the drivers for all the possible PCI devices that you can plug into your board. To solve this problem such complex PCI devices store its 'driver' it its own firmware. This is a concept known as a PCI Option ROM https://en.wikipedia.org/wiki/Option_ROM BIOS queries PCI configuration space in every PCI device and determines if it has an option ROM. If it has BIOS can execute code from the option ROM depending on the BIOS settings. PCI Option ROM can have several code images in itself. The common case is that option ROM contains two images: - driver for the legacy BIOS (Legacy OpROM) - driver for the UEFI BIOS (UEFI OpROM) Keep in mind that older cards can contain only driver for the legacy BIOS, newer/future ones can contain only driver for the UEFI BIOS. Currently the world is in the transition process from Legacy BIOS interface to UEFI. UEFI firmware doesn't work with Legacy OpROMs. But for now vendors still leave a possibility to work with such legacy interfaces via CSM mode. But you wouldn't see any output, if you set a BIOS policy to load only UEFI OpROMs, but your graphic card only contains Legacy OpROM. Also OptionROM can have various code images for different CPU architectures, so this PCI device could work both with ARM CPU host and x86 CPU host. As you can see it might be very interesting to know which OptionROMs your PCI device contain. So let's write the UEFI Shell utility that can show us that. # `EFI_PCI_IO_PROTOCOL` To access PCI devices we would utilize `EFI_PCI_IO_PROTOCOL` https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Protocol/PciRootBridgeIo.h ``` typedef struct _EFI_PCI_IO_PROTOCOL { EFI_PCI_IO_PROTOCOL_POLL_IO_MEM PollMem; EFI_PCI_IO_PROTOCOL_POLL_IO_MEM PollIo; EFI_PCI_IO_PROTOCOL_ACCESS Mem; EFI_PCI_IO_PROTOCOL_ACCESS Io; EFI_PCI_IO_PROTOCOL_CONFIG_ACCESS Pci; EFI_PCI_IO_PROTOCOL_COPY_MEM CopyMem; EFI_PCI_IO_PROTOCOL_MAP Map; EFI_PCI_IO_PROTOCOL_UNMAP Unmap; EFI_PCI_IO_PROTOCOL_ALLOCATE_BUFFER AllocateBuffer; EFI_PCI_IO_PROTOCOL_FREE_BUFFER FreeBuffer; EFI_PCI_IO_PROTOCOL_FLUSH Flush; EFI_PCI_IO_PROTOCOL_GET_LOCATION GetLocation; EFI_PCI_IO_PROTOCOL_ATTRIBUTES Attributes; EFI_PCI_IO_PROTOCOL_GET_BAR_ATTRIBUTES GetBarAttributes; EFI_PCI_IO_PROTOCOL_SET_BAR_ATTRIBUTES SetBarAttributes; UINT64 RomSize; VOID *RomImage; } EFI_PCI_IO_PROTOCOL; ``` As you can see it is pretty similar to the `EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL` we've used in the last lesson. Here is a comparision of these two: ``` typedef struct _EFI_PCI_IO_PROTOCOL { typedef struct _EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL { EFI_HANDLE ParentHandle; EFI_PCI_IO_PROTOCOL_POLL_IO_MEM PollMem; EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_POLL_IO_MEM PollMem; EFI_PCI_IO_PROTOCOL_POLL_IO_MEM PollIo; EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_POLL_IO_MEM PollIo; EFI_PCI_IO_PROTOCOL_ACCESS Mem; EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ACCESS Mem; EFI_PCI_IO_PROTOCOL_ACCESS Io; EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ACCESS Io; EFI_PCI_IO_PROTOCOL_CONFIG_ACCESS Pci; EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ACCESS Pci; EFI_PCI_IO_PROTOCOL_COPY_MEM CopyMem; EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_COPY_MEM CopyMem; EFI_PCI_IO_PROTOCOL_MAP Map; EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_MAP Map; EFI_PCI_IO_PROTOCOL_UNMAP Unmap; EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_UNMAP Unmap; EFI_PCI_IO_PROTOCOL_ALLOCATE_BUFFER AllocateBuffer; EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ALLOCATE_BUFFER AllocateBuffer; EFI_PCI_IO_PROTOCOL_FREE_BUFFER FreeBuffer; EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_FREE_BUFFER FreeBuffer; EFI_PCI_IO_PROTOCOL_FLUSH Flush; EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_FLUSH Flush; EFI_PCI_IO_PROTOCOL_GET_LOCATION GetLocation; EFI_PCI_IO_PROTOCOL_ATTRIBUTES Attributes; EFI_PCI_IO_PROTOCOL_GET_BAR_ATTRIBUTES GetBarAttributes; EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_GET_ATTRIBUTES GetAttributes; EFI_PCI_IO_PROTOCOL_SET_BAR_ATTRIBUTES SetBarAttributes; EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_SET_ATTRIBUTES SetAttributes; UINT64 RomSize; VOID *RomImage; EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_CONFIGURATION Configuration; UINT32 SegmentNumber; } EFI_PCI_IO_PROTOCOL; } EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL; ``` The main difference is that `EFI_PCI_IO_PROTOCOL` is attached to every PCI device in the system and the `EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL` is attached only to PCI Root Bridges. To access PCI OptionROM we would need to utilize these parameters from the `EFI_PCI_IO_PROTOCOL`: ``` RomSize The size, in bytes, of the ROM image. RomImage A pointer to the in memory copy of the ROM image. The PCI Bus Driver is responsible for allocating memory for the ROM image, and copying the contents of the ROM to memory. The contents of this buffer are either from the PCI option ROM that can be accessed through the ROM BAR of the PCI controller, or it is from a platformspecific location. The Attributes() function can be used to determine from which of these two sources the RomImage buffer was initialized ``` First let's try to enumerate PCI devices in our system with this `EFI_PCI_IO_PROTOCOL`. The logic is similar to the one, that we've used in the previous lesson. First we find all handles that have `EFI_PCI_IO_PROTOCOL` protocol via `LocateHandleBuffer` API and then we actually get the each protocol with a `OpenProtocol` call. On every protocol we would execute our `PrintPCI` function that we would write next: ``` EFI_STATUS EFIAPI UefiMain ( IN EFI_HANDLE ImageHandle, IN EFI_SYSTEM_TABLE *SystemTable ) { EFI_STATUS Status; UINTN HandleCount; EFI_HANDLE *HandleBuffer; Status = gBS->LocateHandleBuffer( ByProtocol, &gEfiPciIoProtocolGuid, NULL, &HandleCount, &HandleBuffer ); if (EFI_ERROR (Status)) { Print(L"Can't locate EFI_PCI_IO_PROTOCOL: %r\n", Status); return Status; } //Print(L"Number of PCI devices in the system: %d\n", HandleCount); EFI_PCI_IO_PROTOCOL* PciIo; for (UINTN Index = 0; Index < HandleCount; Index++) { Status = gBS->OpenProtocol ( HandleBuffer[Index], &gEfiPciIoProtocolGuid, (VOID **)&PciIo, ImageHandle, NULL, EFI_OPEN_PROTOCOL_GET_PROTOCOL ); if (EFI_ERROR(Status)) { Print(L"Can't open protocol: %r\n", Status); return Status; } Status = PrintPCI(PciIo); if (EFI_ERROR(Status)) { Print(L"Error in PCI printing\n"); } } FreePool(HandleBuffer); return EFI_SUCCESS; } ``` When we have a `EFI_PCI_IO_PROTOCOL` we can execute `GetLocation()` to know the current PCI controller’s address: ``` EFI_PCI_IO_PROTOCOL.GetLocation() Summary: Retrieves this PCI controller’s current PCI bus number, device number, and function number. Prototype: typedef EFI_STATUS (EFIAPI *EFI_PCI_IO_PROTOCOL_GET_LOCATION) ( IN EFI_PCI_IO_PROTOCOL *This, OUT UINTN *SegmentNumber, OUT UINTN *BusNumber, OUT UINTN *DeviceNumber, OUT UINTN *FunctionNumber ); Parameters: This A pointer to the EFI_PCI_IO_PROTOCOL instance. SegmentNumber The PCI controller’s current PCI segment number. BusNumber The PCI controller’s current PCI bus number. DeviceNumber The PCI controller’s current PCI device number. FunctionNumber The PCI controller’s current PCI function number. Description: The GetLocation() function retrieves a PCI controller’s current location on a PCI Host Bridge. This is specified by a PCI segment number, PCI bus number, PCI device number, and PCI function number. These values can be used with the PCI Root Bridge I/O Protocol to perform PCI configuration cycles on the PCI controller, or any of its peer PCI controller’s on the same PCI Host Bridge. ``` So let's write our `PrintPCI` function: ``` EFI_STATUS PrintPCI(EFI_PCI_IO_PROTOCOL* PciIo) { UINTN SegmentNumber; UINTN BusNumber; UINTN DeviceNumber; UINTN FunctionNumber; EFI_STATUS Status = PciIo->GetLocation(PciIo, &SegmentNumber, &BusNumber, &DeviceNumber, &FunctionNumber); if (EFI_ERROR(Status)) { Print(L"Error in getting PCI location: %r\n", Status); return Status; } PCI_DEVICE_INDEPENDENT_REGION PCIConfHdr; Status = PciIo->Pci.Read(PciIo, EfiPciIoWidthUint8, 0, sizeof(PCI_DEVICE_INDEPENDENT_REGION), &PCIConfHdr); if (EFI_ERROR(Status)) { Print(L"Error in reading PCI conf space: %r\n", Status); return Status; } Print(L"%02x:%02x.%02x - Vendor:%04x, Device:%04x", BusNumber, DeviceNumber, FunctionNumber, PCIConfHdr.VendorId, PCIConfHdr.DeviceId); return Status; } ``` After using `GetLocation` API we've used `Pci.Read` call to read PCI configuration space like we did in earlier lesson. If you'll build and execute our app now you would get the same list of PCI devices, that we've received with a `EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL`. ``` FS0:\> PCIRomInfo.efi 00:00.00 - Vendor:8086, Device:1237 00:01.00 - Vendor:8086, Device:7000 00:01.01 - Vendor:8086, Device:7010 00:01.03 - Vendor:8086, Device:7113 00:02.00 - Vendor:1234, Device:1111 ``` But right now we are interested only in devices that have PCI Option ROM, so replace the `Print` statement to: ``` if (PciIo->RomSize) { Print(L"%02x:%02x.%02x - Vendor:%04x, Device:%04x", BusNumber, DeviceNumber, FunctionNumber, PCIConfHdr.VendorId, PCIConfHdr.DeviceId); CHAR16 VendorDesc[DESCRIPTOR_STR_MAX_SIZE]; CHAR16 DeviceDesc[DESCRIPTOR_STR_MAX_SIZE]; Status = FindPCIDevDescription(PCIConfHdr.VendorId, PCIConfHdr.DeviceId, VendorDesc, DeviceDesc, DESCRIPTOR_STR_MAX_SIZE); if (!EFI_ERROR(Status)) { Print(L": %s, %s\n", VendorDesc, DeviceDesc); } else { Print(L"\n"); } PrintOptionROM(PciIo->RomImage, PciIo->RomSize); } ``` Here I've used a `FindPCIDevDescription` function, you need to copy it from the last lesson. Also the main OptionROM printing would be happening in a `PrintOptionROM` that we'll write next. But first some theory. OptionROM image in memory would have a special header. edk2 definition for the header structure is `PCI_EXPANSION_ROM_HEADER`. This header contains signature field that is equal to `0xAA55`. You can check out definitions in a file https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/Pci22.h: ``` #define PCI_EXPANSION_ROM_HEADER_SIGNATURE 0xaa55 ... /// /// Standard PCI Expansion ROM Header /// Section 13.4.2, Unified Extensible Firmware Interface Specification, Version 2.1 /// typedef struct { UINT16 Signature; ///< 0xaa55 UINT8 Reserved[0x16]; UINT16 PcirOffset; } PCI_EXPANSION_ROM_HEADER; ``` This header has offset (`PcirOffset`) to another header `PCI_DATA_STRUCTURE`. It also has a `signature` field which is equal to `PCIR` in this case: ``` /// /// PCI Data Structure Format /// Section 6.3.1.2, PCI Local Bus Specification, 2.2 /// typedef struct { UINT32 Signature; ///< "PCIR" UINT16 VendorId; UINT16 DeviceId; UINT16 Reserved0; UINT16 Length; UINT8 Revision; UINT8 ClassCode[3]; UINT16 ImageLength; UINT16 CodeRevision; UINT8 CodeType; UINT8 Indicator; UINT16 Reserved1; } PCI_DATA_STRUCTURE; ``` These two headers prepends every code image in an Option ROM. As you remember there can be several code images in the Option ROM. To find all of them we need to loop through the header structures. Two fields will help us to do it: - `PCI_DATA_STRUCTURE.ImageLength` - describes the total code image size in 512 byte increments, - `PCI_DATA_STRUCTURE.Indicator` - the most significant bit of this byte tells if this is the last code image in the option ROM With this in mind let's write the main loop for the Option ROM parsing: ``` VOID PrintOptionROM(VOID *RomImage, UINT64 RomSize) { Print(L"Has OptionROM at memory %p-%p\n", RomImage, (UINT8*)RomImage + RomSize); PCI_EXPANSION_ROM_HEADER* RomHeader = (PCI_EXPANSION_ROM_HEADER*) RomImage; UINTN RomImageIndex = 1; while (TRUE) { if (RomHeader->Signature != PCI_EXPANSION_ROM_HEADER_SIGNATURE) { Print(L"Error! OptionROM has a wrong signature\n"); return; } PCI_DATA_STRUCTURE* RomImage = (PCI_DATA_STRUCTURE*)((UINT8*)RomHeader + RomHeader->PcirOffset); if ((((CHAR8)((RomImage->Signature >> 0) & 0xFF)) != 'P') && (((CHAR8)((RomImage->Signature >> 8) & 0xFF)) != 'C') && (((CHAR8)((RomImage->Signature >> 16) & 0xFF)) != 'I') && (((CHAR8)((RomImage->Signature >> 24) & 0xFF)) != 'R')) { Print(L"Error! OptionROM image has wrong signature\n"); return; } <...> if ((RomImage->Indicator) & 0x80) { break; } RomHeader = (PCI_EXPANSION_ROM_HEADER*)((UINT8*) RomHeader + (RomImage->ImageLength)*512); RomImageIndex++; } Print(L"------------------\n"); } ``` In the `<...>` we should write an actual parsing of the code image. UEFI specification was trying to adapt to the current Option ROM design that was already present when UEFI is originated. It appears that original Option ROM design wasn't thought with extendability in mind. Therefore UEFI extended it as it could, and now the parsing process may look a little bit strange. First we need to look at the field `PCI_DATA_STRUCTURE.CodeType` in the second header. And by this field interpret the first `PCI_EXPANSION_ROM_HEADER`. That is why there is a strange `union` in the https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/Pci22.h: ``` typedef union { UINT8 *Raw; PCI_EXPANSION_ROM_HEADER *Generic; EFI_PCI_EXPANSION_ROM_HEADER *Efi; EFI_LEGACY_EXPANSION_ROM_HEADER *PcAt; } EFI_PCI_ROM_HEADER; ``` It means that: - if an image is Legacy (`PCI_DATA_STRUCTURE.CodeType = 0x00`) then you should treat `EFI_PCI_ROM_HEADER` as a `EFI_LEGACY_EXPANSION_ROM_HEADER` - if an image is UEFI (`PCI_DATA_STRUCTURE.CodeType = 0x03`) then you should treat `EFI_PCI_ROM_HEADER` as a `EFI_PCI_EXPANSION_ROM_HEADER` - if you don't know image type yet, you can only treat `EFI_PCI_ROM_HEADER` as a `PCI_EXPANSION_ROM_HEADER` There is nothing useful for us in the `EFI_LEGACY_EXPANSION_ROM_HEADER`, so we would only print additional information if the image is EFI: ``` Print(L"---Code Image %d---\n", RomImageIndex); Print(L"Address: %p-%p\n", RomHeader, (UINT8*)RomHeader + (RomImage->ImageLength)*512); Print(L"VendorId: %04x, DeviceId: %04x\n", RomImage->VendorId, RomImage->DeviceId); Print(L"Type: "); switch (RomImage->CodeType) { case 0x00: Print(L"IA-32, PC-AT compatible\n"); break; case 0x01: Print(L"Open Firmware standard for PCI\n"); break; case 0x02: Print(L"Hewlett-Packard PA RISC\n"); break; case 0x03: Print(L"EFI Image\n"); break; default: Print(L"Unknown\n"); break; } if (RomImage->CodeType == 0x03) { EFI_PCI_EXPANSION_ROM_HEADER* EfiRomHeader = (EFI_PCI_EXPANSION_ROM_HEADER*) RomHeader; if (EfiRomHeader->EfiSignature == EFI_PCI_EXPANSION_ROM_HEADER_EFISIGNATURE) { } else { Print(L"EFI signature is incorrect!\n"); } } ``` If the image is EFI we can print its type, target CPU architecture and compression: ``` Print(L"Subsystem: "); switch (EfiRomHeader->EfiSubsystem) { case EFI_IMAGE_SUBSYSTEM_EFI_APPLICATION: Print(L"EFI Application\n"); break; case EFI_IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER: Print(L"EFI Boot Service Driver\n"); break; case EFI_IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER: Print(L"EFI Runtime Driver\n"); break; case EFI_IMAGE_SUBSYSTEM_SAL_RUNTIME_DRIVER: Print(L"EFI SAL Runtime Driver\n"); break; default: Print(L"Unknown\n"); break; } Print(L"Machine type: "); switch (EfiRomHeader->EfiMachineType) { case IMAGE_FILE_MACHINE_I386: Print(L"IA-32\n"); break; case IMAGE_FILE_MACHINE_IA64: Print(L"Itanium\n"); break; case IMAGE_FILE_MACHINE_EBC: Print(L"EFI Byte Code (EBC)\n"); break; case IMAGE_FILE_MACHINE_X64: Print(L"X64\n"); break; case IMAGE_FILE_MACHINE_ARMTHUMB_MIXED: Print(L"ARM\n"); break; case IMAGE_FILE_MACHINE_ARM64: Print(L"ARM 64-bit\n"); break; case IMAGE_FILE_MACHINE_RISCV32: Print(L"RISCV32\n"); break; case IMAGE_FILE_MACHINE_RISCV64: Print(L"RISCV64\n"); break; case IMAGE_FILE_MACHINE_RISCV128: Print(L"RISCV128\n"); break; default: Print(L"Unknown\n"); break; } switch (EfiRomHeader->CompressionType) { case EFI_PCI_EXPANSION_ROM_HEADER_COMPRESSED: Print(L"Compressed following the UEFI Compression Algorithm\n"); break; case 0: Print(L"Uncompressed\n"); break; default: Print(L"Unknown compression type\n"); break; } ``` Check out "PCI Option ROMs" part in the UEFI spec for the explanation of the parsing process. Also some of these case statements use constants from the PE specification, therefore we have to include PE Image header https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/PeImage.h: ``` #include ``` Build our program. After that copy its `*.efi` executable to our QEMU shared folder and run OVMF with a command: ``` $ qemu-system-x86_64 -drive if=pflash,format=raw,file=Build/OvmfX64/RELEASE_GCC5/FV/OVMF.fd \ -nographic \ -net none ``` If you execute our program now you would get: ``` FS0:\> PCIRomInfo.efi 00:02.00 - Vendor:1234, Device:1111: Undefined, Undefined Has OptionROM at memory 6EA5018-6EAEA18 ---Code Image 1--- Address: 6EA5018-6EAEA18 PCIR address: 6EAE854 VendorId: 1234, DeviceId: 1111 Type: IA-32, PC-AT compatible ------------------ ``` You can use `dmem` to peak in the Option ROM regions. At the `6EA5018` you can see the first header with its `AA55` signature: ``` FS0:\> dmem 6EA5018 30 Memory Address 0000000006EA5018 30 Bytes 06EA5018: 55 AA 4D E9 AE 55 B4 00-00 00 00 00 00 00 00 00 *U.M..U..........* 06EA5028: 00 00 00 00 00 00 00 00-3C 98 00 00 00 00 49 42 *........<.....IB* 06EA5038: 4D 00 2E 8B 16 C6 98 85-D2 74 01 EE C2 02 00 66 *M........t.....f* ``` And at the `6EAE854` you can observe the second header with its `PCIR` signature. After it immediately follows PCI vendor/device pair (`1234:1111`): ``` FS0:\> dmem 6EAE854 30 Memory Address 0000000006EAE854 30 Bytes 06EAE854: 50 43 49 52 34 12 11 11-00 00 18 00 00 00 00 03 *PCIR4...........* 06EAE864: 4D 00 01 00 00 80 00 00-66 90 66 90 66 90 66 90 *M.......f.f.f.f.* 06EAE874: 66 90 66 90 67 63 63 3A-20 28 55 62 75 6E 74 75 *f.f.gcc: (Ubuntu* ``` Now let's rerun our QEMU without `-net none` option: ``` $ qemu-system-x86_64 -drive if=pflash,format=raw,file=Build/OvmfX64/RELEASE_GCC5/FV/OVMF.fd \ -nographic ``` And execute our program again: ``` FS0:\> PCIRomInfo.efi 00:02.00 - Vendor:1234, Device:1111: Undefined, Undefined Has OptionROM at memory 6EA5018-6EAEA18 ---Code Image 1--- Address: 6EA5018-6EAEA18 PCIR address: 6EAE854 VendorId: 1234, DeviceId: 1111 Type: IA-32, PC-AT compatible ------------------ 00:03.00 - Vendor:8086, Device:100E: Intel Corporation, 82540EM Gigabit Ethernet Controller Has OptionROM at memory 6E59018-6EA4218 ---Code Image 1--- Address: 6E59018-6E6F418 PCIR address: 6E59034 VendorId: 8086, DeviceId: 100E Type: IA-32, PC-AT compatible ---Code Image 2--- Address: 6E6F418-6EA4218 PCIR address: 6E6F434 VendorId: 8086, DeviceId: 100E Type: EFI Image Subsystem: EFI Boot Service Driver Machine type: X64 Uncompressed ------------------ ``` Now besides the Legacy Option ROM for the `1234:1111` VGA QEMU device there is another Option ROM. This second Option ROM is for the PCI network card and it has two code images in itself: for legacy BIOS and for UEFI. If you peak in the second image you'll see some strings that will give you a clue that this is an iPXE image (https://ipxe.org/start): ``` FS0:\> dmem 6E59018 c0 Memory Address 0000000006E59018 C0 Bytes 06E59018: 55 AA B2 E9 A2 00 22 00-00 00 00 00 00 00 00 00 *U.....".........* 06E59028: 9C 00 00 00 00 00 84 00-1C 00 40 00 50 43 49 52 *..........@.PCIR* 06E59038: 86 80 0E 10 BF 04 1C 00-03 02 00 00 B2 00 01 00 *................* 06E59048: 00 00 07 00 00 00 00 00-8D B4 00 00 8D B4 00 00 *................* 06E59058: 24 50 6E 50 01 02 00 00-00 7D 00 00 00 00 60 00 *$PnP.....}....`.* 06E59068: 70 00 02 00 00 F4 00 00-00 00 85 03 00 00 00 00 *p...............* 06E59078: 68 74 74 70 3A 2F 2F 69-70 78 65 2E 6F 72 67 00 *http://ipxe.org.* 06E59088: 69 50 58 45 00 28 50 43-49 20 78 78 3A 78 78 2E *iPXE.(PCI xx:xx.* 06E59098: 78 29 00 90 55 4E 44 49-16 1D 00 00 01 02 A4 04 *x)..UNDI........* 06E590A8: 10 2D 10 2D 42 08 50 43-49 52 66 90 69 50 58 45 *.-.-B.PCIRf.iPXE* 06E590B8: 0C 4E 07 00 FE DB B2 BE-60 1E 06 0F A0 0F A8 FC *.N......`.......* 06E590C8: 0E 1F BE 27 03 31 FF E8-4C 04 8E EB 31 FF E8 3D *...'.1..L...1..=* ```