/// @ref core /// @file glm/detail/func_geometric_simd.inl #include "../simd/geometric.h" #if GLM_ARCH & GLM_ARCH_SSE2_BIT namespace glm{ namespace detail { template struct compute_length<4, float, Q, true> { GLM_FUNC_QUALIFIER static float call(vec<4, float, Q> const& v) { return _mm_cvtss_f32(glm_vec4_length(v.data)); } }; template struct compute_distance<4, float, Q, true> { GLM_FUNC_QUALIFIER static float call(vec<4, float, Q> const& p0, vec<4, float, Q> const& p1) { return _mm_cvtss_f32(glm_vec4_distance(p0.data, p1.data)); } }; template struct compute_dot, float, true> { GLM_FUNC_QUALIFIER static float call(vec<4, float, Q> const& x, vec<4, float, Q> const& y) { return _mm_cvtss_f32(glm_vec1_dot(x.data, y.data)); } }; template struct compute_cross { GLM_FUNC_QUALIFIER static vec<3, float, Q> call(vec<3, float, Q> const& a, vec<3, float, Q> const& b) { __m128 const set0 = _mm_set_ps(0.0f, a.z, a.y, a.x); __m128 const set1 = _mm_set_ps(0.0f, b.z, b.y, b.x); __m128 const xpd0 = glm_vec4_cross(set0, set1); vec<4, float, Q> Result; Result.data = xpd0; return vec<3, float, Q>(Result); } }; template struct compute_normalize<4, float, Q, true> { GLM_FUNC_QUALIFIER static vec<4, float, Q> call(vec<4, float, Q> const& v) { vec<4, float, Q> Result; Result.data = glm_vec4_normalize(v.data); return Result; } }; template struct compute_faceforward<4, float, Q, true> { GLM_FUNC_QUALIFIER static vec<4, float, Q> call(vec<4, float, Q> const& N, vec<4, float, Q> const& I, vec<4, float, Q> const& Nref) { vec<4, float, Q> Result; Result.data = glm_vec4_faceforward(N.data, I.data, Nref.data); return Result; } }; template struct compute_reflect<4, float, Q, true> { GLM_FUNC_QUALIFIER static vec<4, float, Q> call(vec<4, float, Q> const& I, vec<4, float, Q> const& N) { vec<4, float, Q> Result; Result.data = glm_vec4_reflect(I.data, N.data); return Result; } }; template struct compute_refract<4, float, Q, true> { GLM_FUNC_QUALIFIER static vec<4, float, Q> call(vec<4, float, Q> const& I, vec<4, float, Q> const& N, float eta) { vec<4, float, Q> Result; Result.data = glm_vec4_refract(I.data, N.data, _mm_set1_ps(eta)); return Result; } }; }//namespace detail }//namespace glm #elif GLM_ARCH & GLM_ARCH_NEON_BIT namespace glm{ namespace detail { template struct compute_length<4, float, Q, true> { GLM_FUNC_QUALIFIER static float call(vec<4, float, Q> const& v) { return sqrt(compute_dot, float, true>::call(v, v)); } }; template struct compute_distance<4, float, Q, true> { GLM_FUNC_QUALIFIER static float call(vec<4, float, Q> const& p0, vec<4, float, Q> const& p1) { return compute_length<4, float, Q, true>::call(p1 - p0); } }; template struct compute_dot, float, true> { GLM_FUNC_QUALIFIER static float call(vec<4, float, Q> const& x, vec<4, float, Q> const& y) { #if GLM_ARCH & GLM_ARCH_ARMV8_BIT float32x4_t v = vmulq_f32(x.data, y.data); return vaddvq_f32(v); #else // Armv7a with Neon float32x4_t p = vmulq_f32(x.data, y.data); float32x2_t v = vpadd_f32(vget_low_f32(p), vget_high_f32(p)); v = vpadd_f32(v, v); return vget_lane_f32(v, 0); #endif } }; template struct compute_normalize<4, float, Q, true> { GLM_FUNC_QUALIFIER static vec<4, float, Q> call(vec<4, float, Q> const& v) { float32x4_t p = vmulq_f32(v.data, v.data); #if GLM_ARCH & GLM_ARCH_ARMV8_BIT p = vpaddq_f32(p, p); p = vpaddq_f32(p, p); #else float32x2_t t = vpadd_f32(vget_low_f32(p), vget_high_f32(p)); t = vpadd_f32(t, t); p = vcombine_f32(t, t); #endif float32x4_t vd = vrsqrteq_f32(p); vec<4, float, Q> Result; Result.data = vmulq_f32(v.data, vd); return Result; } }; }//namespace detail }//namespace glm #endif//GLM_ARCH & GLM_ARCH_SSE2_BIT