#if GLM_ARCH & GLM_ARCH_SSE2_BIT #include "type_mat4x4.hpp" #include "../geometric.hpp" #include "../simd/matrix.h" #include namespace glm{ namespace detail { # if GLM_CONFIG_ALIGNED_GENTYPES == GLM_ENABLE template struct compute_matrixCompMult<4, 4, float, Q, true> { GLM_STATIC_ASSERT(detail::is_aligned::value, "Specialization requires aligned"); GLM_FUNC_QUALIFIER static mat<4, 4, float, Q> call(mat<4, 4, float, Q> const& x, mat<4, 4, float, Q> const& y) { mat<4, 4, float, Q> Result; glm_mat4_matrixCompMult( *static_cast(&x[0].data), *static_cast(&y[0].data), *static_cast(&Result[0].data)); return Result; } }; # endif template struct compute_transpose<4, 4, float, Q, true> { GLM_FUNC_QUALIFIER static mat<4, 4, float, Q> call(mat<4, 4, float, Q> const& m) { mat<4, 4, float, Q> Result; glm_mat4_transpose(&m[0].data, &Result[0].data); return Result; } }; template struct compute_determinant<4, 4, float, Q, true> { GLM_FUNC_QUALIFIER static float call(mat<4, 4, float, Q> const& m) { return _mm_cvtss_f32(glm_mat4_determinant(&m[0].data)); } }; template struct compute_inverse<4, 4, float, Q, true> { GLM_FUNC_QUALIFIER static mat<4, 4, float, Q> call(mat<4, 4, float, Q> const& m) { mat<4, 4, float, Q> Result; glm_mat4_inverse(&m[0].data, &Result[0].data); return Result; } }; }//namespace detail # if GLM_CONFIG_ALIGNED_GENTYPES == GLM_ENABLE template<> GLM_FUNC_QUALIFIER mat<4, 4, float, aligned_lowp> outerProduct<4, 4, float, aligned_lowp>(vec<4, float, aligned_lowp> const& c, vec<4, float, aligned_lowp> const& r) { __m128 NativeResult[4]; glm_mat4_outerProduct(c.data, r.data, NativeResult); mat<4, 4, float, aligned_lowp> Result; std::memcpy(&Result[0], &NativeResult[0], sizeof(Result)); return Result; } template<> GLM_FUNC_QUALIFIER mat<4, 4, float, aligned_mediump> outerProduct<4, 4, float, aligned_mediump>(vec<4, float, aligned_mediump> const& c, vec<4, float, aligned_mediump> const& r) { __m128 NativeResult[4]; glm_mat4_outerProduct(c.data, r.data, NativeResult); mat<4, 4, float, aligned_mediump> Result; std::memcpy(&Result[0], &NativeResult[0], sizeof(Result)); return Result; } template<> GLM_FUNC_QUALIFIER mat<4, 4, float, aligned_highp> outerProduct<4, 4, float, aligned_highp>(vec<4, float, aligned_highp> const& c, vec<4, float, aligned_highp> const& r) { __m128 NativeResult[4]; glm_mat4_outerProduct(c.data, r.data, NativeResult); mat<4, 4, float, aligned_highp> Result; std::memcpy(&Result[0], &NativeResult[0], sizeof(Result)); return Result; } # endif }//namespace glm #elif GLM_ARCH & GLM_ARCH_NEON_BIT namespace glm { #if GLM_LANG & GLM_LANG_CXX11_FLAG template GLM_FUNC_QUALIFIER typename std::enable_if::value, mat<4, 4, float, Q>>::type operator*(mat<4, 4, float, Q> const & m1, mat<4, 4, float, Q> const & m2) { auto MulRow = [&](int l) { float32x4_t const SrcA = m2[l].data; float32x4_t r = neon::mul_lane(m1[0].data, SrcA, 0); r = neon::madd_lane(r, m1[1].data, SrcA, 1); r = neon::madd_lane(r, m1[2].data, SrcA, 2); r = neon::madd_lane(r, m1[3].data, SrcA, 3); return r; }; mat<4, 4, float, aligned_highp> Result; Result[0].data = MulRow(0); Result[1].data = MulRow(1); Result[2].data = MulRow(2); Result[3].data = MulRow(3); return Result; } #endif // CXX11 template struct detail::compute_inverse<4, 4, float, Q, true> { GLM_FUNC_QUALIFIER static mat<4, 4, float, Q> call(mat<4, 4, float, Q> const& m) { float32x4_t const& m0 = m[0].data; float32x4_t const& m1 = m[1].data; float32x4_t const& m2 = m[2].data; float32x4_t const& m3 = m[3].data; // m[2][2] * m[3][3] - m[3][2] * m[2][3]; // m[2][2] * m[3][3] - m[3][2] * m[2][3]; // m[1][2] * m[3][3] - m[3][2] * m[1][3]; // m[1][2] * m[2][3] - m[2][2] * m[1][3]; float32x4_t Fac0; { float32x4_t w0 = vcombine_f32(neon::dup_lane(m2, 2), neon::dup_lane(m1, 2)); float32x4_t w1 = neon::copy_lane(neon::dupq_lane(m3, 3), 3, m2, 3); float32x4_t w2 = neon::copy_lane(neon::dupq_lane(m3, 2), 3, m2, 2); float32x4_t w3 = vcombine_f32(neon::dup_lane(m2, 3), neon::dup_lane(m1, 3)); Fac0 = w0 * w1 - w2 * w3; } // m[2][1] * m[3][3] - m[3][1] * m[2][3]; // m[2][1] * m[3][3] - m[3][1] * m[2][3]; // m[1][1] * m[3][3] - m[3][1] * m[1][3]; // m[1][1] * m[2][3] - m[2][1] * m[1][3]; float32x4_t Fac1; { float32x4_t w0 = vcombine_f32(neon::dup_lane(m2, 1), neon::dup_lane(m1, 1)); float32x4_t w1 = neon::copy_lane(neon::dupq_lane(m3, 3), 3, m2, 3); float32x4_t w2 = neon::copy_lane(neon::dupq_lane(m3, 1), 3, m2, 1); float32x4_t w3 = vcombine_f32(neon::dup_lane(m2, 3), neon::dup_lane(m1, 3)); Fac1 = w0 * w1 - w2 * w3; } // m[2][1] * m[3][2] - m[3][1] * m[2][2]; // m[2][1] * m[3][2] - m[3][1] * m[2][2]; // m[1][1] * m[3][2] - m[3][1] * m[1][2]; // m[1][1] * m[2][2] - m[2][1] * m[1][2]; float32x4_t Fac2; { float32x4_t w0 = vcombine_f32(neon::dup_lane(m2, 1), neon::dup_lane(m1, 1)); float32x4_t w1 = neon::copy_lane(neon::dupq_lane(m3, 2), 3, m2, 2); float32x4_t w2 = neon::copy_lane(neon::dupq_lane(m3, 1), 3, m2, 1); float32x4_t w3 = vcombine_f32(neon::dup_lane(m2, 2), neon::dup_lane(m1, 2)); Fac2 = w0 * w1 - w2 * w3; } // m[2][0] * m[3][3] - m[3][0] * m[2][3]; // m[2][0] * m[3][3] - m[3][0] * m[2][3]; // m[1][0] * m[3][3] - m[3][0] * m[1][3]; // m[1][0] * m[2][3] - m[2][0] * m[1][3]; float32x4_t Fac3; { float32x4_t w0 = vcombine_f32(neon::dup_lane(m2, 0), neon::dup_lane(m1, 0)); float32x4_t w1 = neon::copy_lane(neon::dupq_lane(m3, 3), 3, m2, 3); float32x4_t w2 = neon::copy_lane(neon::dupq_lane(m3, 0), 3, m2, 0); float32x4_t w3 = vcombine_f32(neon::dup_lane(m2, 3), neon::dup_lane(m1, 3)); Fac3 = w0 * w1 - w2 * w3; } // m[2][0] * m[3][2] - m[3][0] * m[2][2]; // m[2][0] * m[3][2] - m[3][0] * m[2][2]; // m[1][0] * m[3][2] - m[3][0] * m[1][2]; // m[1][0] * m[2][2] - m[2][0] * m[1][2]; float32x4_t Fac4; { float32x4_t w0 = vcombine_f32(neon::dup_lane(m2, 0), neon::dup_lane(m1, 0)); float32x4_t w1 = neon::copy_lane(neon::dupq_lane(m3, 2), 3, m2, 2); float32x4_t w2 = neon::copy_lane(neon::dupq_lane(m3, 0), 3, m2, 0); float32x4_t w3 = vcombine_f32(neon::dup_lane(m2, 2), neon::dup_lane(m1, 2)); Fac4 = w0 * w1 - w2 * w3; } // m[2][0] * m[3][1] - m[3][0] * m[2][1]; // m[2][0] * m[3][1] - m[3][0] * m[2][1]; // m[1][0] * m[3][1] - m[3][0] * m[1][1]; // m[1][0] * m[2][1] - m[2][0] * m[1][1]; float32x4_t Fac5; { float32x4_t w0 = vcombine_f32(neon::dup_lane(m2, 0), neon::dup_lane(m1, 0)); float32x4_t w1 = neon::copy_lane(neon::dupq_lane(m3, 1), 3, m2, 1); float32x4_t w2 = neon::copy_lane(neon::dupq_lane(m3, 0), 3, m2, 0); float32x4_t w3 = vcombine_f32(neon::dup_lane(m2, 1), neon::dup_lane(m1, 1)); Fac5 = w0 * w1 - w2 * w3; } float32x4_t Vec0 = neon::copy_lane(neon::dupq_lane(m0, 0), 0, m1, 0); // (m[1][0], m[0][0], m[0][0], m[0][0]); float32x4_t Vec1 = neon::copy_lane(neon::dupq_lane(m0, 1), 0, m1, 1); // (m[1][1], m[0][1], m[0][1], m[0][1]); float32x4_t Vec2 = neon::copy_lane(neon::dupq_lane(m0, 2), 0, m1, 2); // (m[1][2], m[0][2], m[0][2], m[0][2]); float32x4_t Vec3 = neon::copy_lane(neon::dupq_lane(m0, 3), 0, m1, 3); // (m[1][3], m[0][3], m[0][3], m[0][3]); float32x4_t Inv0 = Vec1 * Fac0 - Vec2 * Fac1 + Vec3 * Fac2; float32x4_t Inv1 = Vec0 * Fac0 - Vec2 * Fac3 + Vec3 * Fac4; float32x4_t Inv2 = Vec0 * Fac1 - Vec1 * Fac3 + Vec3 * Fac5; float32x4_t Inv3 = Vec0 * Fac2 - Vec1 * Fac4 + Vec2 * Fac5; float32x4_t r0 = float32x4_t{-1, +1, -1, +1} * Inv0; float32x4_t r1 = float32x4_t{+1, -1, +1, -1} * Inv1; float32x4_t r2 = float32x4_t{-1, +1, -1, +1} * Inv2; float32x4_t r3 = float32x4_t{+1, -1, +1, -1} * Inv3; float32x4_t det = neon::mul_lane(r0, m0, 0); det = neon::madd_lane(det, r1, m0, 1); det = neon::madd_lane(det, r2, m0, 2); det = neon::madd_lane(det, r3, m0, 3); float32x4_t rdet = vdupq_n_f32(1 / vgetq_lane_f32(det, 0)); mat<4, 4, float, Q> r; r[0].data = vmulq_f32(r0, rdet); r[1].data = vmulq_f32(r1, rdet); r[2].data = vmulq_f32(r2, rdet); r[3].data = vmulq_f32(r3, rdet); return r; } }; }//namespace glm #endif