namespace glm { template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> ortho(T left, T right, T bottom, T top) { mat<4, 4, T, defaultp> Result(static_cast(1)); Result[0][0] = static_cast(2) / (right - left); Result[1][1] = static_cast(2) / (top - bottom); Result[2][2] = - static_cast(1); Result[3][0] = - (right + left) / (right - left); Result[3][1] = - (top + bottom) / (top - bottom); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoLH_ZO(T left, T right, T bottom, T top, T zNear, T zFar) { mat<4, 4, T, defaultp> Result(1); Result[0][0] = static_cast(2) / (right - left); Result[1][1] = static_cast(2) / (top - bottom); Result[2][2] = static_cast(1) / (zFar - zNear); Result[3][0] = - (right + left) / (right - left); Result[3][1] = - (top + bottom) / (top - bottom); Result[3][2] = - zNear / (zFar - zNear); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoLH_NO(T left, T right, T bottom, T top, T zNear, T zFar) { mat<4, 4, T, defaultp> Result(1); Result[0][0] = static_cast(2) / (right - left); Result[1][1] = static_cast(2) / (top - bottom); Result[2][2] = static_cast(2) / (zFar - zNear); Result[3][0] = - (right + left) / (right - left); Result[3][1] = - (top + bottom) / (top - bottom); Result[3][2] = - (zFar + zNear) / (zFar - zNear); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoRH_ZO(T left, T right, T bottom, T top, T zNear, T zFar) { mat<4, 4, T, defaultp> Result(1); Result[0][0] = static_cast(2) / (right - left); Result[1][1] = static_cast(2) / (top - bottom); Result[2][2] = - static_cast(1) / (zFar - zNear); Result[3][0] = - (right + left) / (right - left); Result[3][1] = - (top + bottom) / (top - bottom); Result[3][2] = - zNear / (zFar - zNear); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoRH_NO(T left, T right, T bottom, T top, T zNear, T zFar) { mat<4, 4, T, defaultp> Result(1); Result[0][0] = static_cast(2) / (right - left); Result[1][1] = static_cast(2) / (top - bottom); Result[2][2] = - static_cast(2) / (zFar - zNear); Result[3][0] = - (right + left) / (right - left); Result[3][1] = - (top + bottom) / (top - bottom); Result[3][2] = - (zFar + zNear) / (zFar - zNear); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoZO(T left, T right, T bottom, T top, T zNear, T zFar) { # if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT return orthoLH_ZO(left, right, bottom, top, zNear, zFar); # else return orthoRH_ZO(left, right, bottom, top, zNear, zFar); # endif } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoNO(T left, T right, T bottom, T top, T zNear, T zFar) { # if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT return orthoLH_NO(left, right, bottom, top, zNear, zFar); # else return orthoRH_NO(left, right, bottom, top, zNear, zFar); # endif } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoLH(T left, T right, T bottom, T top, T zNear, T zFar) { # if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT return orthoLH_ZO(left, right, bottom, top, zNear, zFar); # else return orthoLH_NO(left, right, bottom, top, zNear, zFar); # endif } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoRH(T left, T right, T bottom, T top, T zNear, T zFar) { # if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT return orthoRH_ZO(left, right, bottom, top, zNear, zFar); # else return orthoRH_NO(left, right, bottom, top, zNear, zFar); # endif } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> ortho(T left, T right, T bottom, T top, T zNear, T zFar) { # if GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_ZO return orthoLH_ZO(left, right, bottom, top, zNear, zFar); # elif GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_NO return orthoLH_NO(left, right, bottom, top, zNear, zFar); # elif GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_ZO return orthoRH_ZO(left, right, bottom, top, zNear, zFar); # elif GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_NO return orthoRH_NO(left, right, bottom, top, zNear, zFar); # endif } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumLH_ZO(T left, T right, T bottom, T top, T nearVal, T farVal) { mat<4, 4, T, defaultp> Result(0); Result[0][0] = (static_cast(2) * nearVal) / (right - left); Result[1][1] = (static_cast(2) * nearVal) / (top - bottom); Result[2][0] = (right + left) / (right - left); Result[2][1] = (top + bottom) / (top - bottom); Result[2][2] = farVal / (farVal - nearVal); Result[2][3] = static_cast(1); Result[3][2] = -(farVal * nearVal) / (farVal - nearVal); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumLH_NO(T left, T right, T bottom, T top, T nearVal, T farVal) { mat<4, 4, T, defaultp> Result(0); Result[0][0] = (static_cast(2) * nearVal) / (right - left); Result[1][1] = (static_cast(2) * nearVal) / (top - bottom); Result[2][0] = (right + left) / (right - left); Result[2][1] = (top + bottom) / (top - bottom); Result[2][2] = (farVal + nearVal) / (farVal - nearVal); Result[2][3] = static_cast(1); Result[3][2] = - (static_cast(2) * farVal * nearVal) / (farVal - nearVal); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumRH_ZO(T left, T right, T bottom, T top, T nearVal, T farVal) { mat<4, 4, T, defaultp> Result(0); Result[0][0] = (static_cast(2) * nearVal) / (right - left); Result[1][1] = (static_cast(2) * nearVal) / (top - bottom); Result[2][0] = (right + left) / (right - left); Result[2][1] = (top + bottom) / (top - bottom); Result[2][2] = farVal / (nearVal - farVal); Result[2][3] = static_cast(-1); Result[3][2] = -(farVal * nearVal) / (farVal - nearVal); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumRH_NO(T left, T right, T bottom, T top, T nearVal, T farVal) { mat<4, 4, T, defaultp> Result(0); Result[0][0] = (static_cast(2) * nearVal) / (right - left); Result[1][1] = (static_cast(2) * nearVal) / (top - bottom); Result[2][0] = (right + left) / (right - left); Result[2][1] = (top + bottom) / (top - bottom); Result[2][2] = - (farVal + nearVal) / (farVal - nearVal); Result[2][3] = static_cast(-1); Result[3][2] = - (static_cast(2) * farVal * nearVal) / (farVal - nearVal); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumZO(T left, T right, T bottom, T top, T nearVal, T farVal) { # if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT return frustumLH_ZO(left, right, bottom, top, nearVal, farVal); # else return frustumRH_ZO(left, right, bottom, top, nearVal, farVal); # endif } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumNO(T left, T right, T bottom, T top, T nearVal, T farVal) { # if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT return frustumLH_NO(left, right, bottom, top, nearVal, farVal); # else return frustumRH_NO(left, right, bottom, top, nearVal, farVal); # endif } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumLH(T left, T right, T bottom, T top, T nearVal, T farVal) { # if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT return frustumLH_ZO(left, right, bottom, top, nearVal, farVal); # else return frustumLH_NO(left, right, bottom, top, nearVal, farVal); # endif } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumRH(T left, T right, T bottom, T top, T nearVal, T farVal) { # if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT return frustumRH_ZO(left, right, bottom, top, nearVal, farVal); # else return frustumRH_NO(left, right, bottom, top, nearVal, farVal); # endif } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustum(T left, T right, T bottom, T top, T nearVal, T farVal) { # if GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_ZO return frustumLH_ZO(left, right, bottom, top, nearVal, farVal); # elif GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_NO return frustumLH_NO(left, right, bottom, top, nearVal, farVal); # elif GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_ZO return frustumRH_ZO(left, right, bottom, top, nearVal, farVal); # elif GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_NO return frustumRH_NO(left, right, bottom, top, nearVal, farVal); # endif } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveRH_ZO(T fovy, T aspect, T zNear, T zFar) { assert(abs(aspect - std::numeric_limits::epsilon()) > static_cast(0)); T const tanHalfFovy = tan(fovy / static_cast(2)); mat<4, 4, T, defaultp> Result(static_cast(0)); Result[0][0] = static_cast(1) / (aspect * tanHalfFovy); Result[1][1] = static_cast(1) / (tanHalfFovy); Result[2][2] = zFar / (zNear - zFar); Result[2][3] = - static_cast(1); Result[3][2] = -(zFar * zNear) / (zFar - zNear); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveRH_NO(T fovy, T aspect, T zNear, T zFar) { assert(abs(aspect - std::numeric_limits::epsilon()) > static_cast(0)); T const tanHalfFovy = tan(fovy / static_cast(2)); mat<4, 4, T, defaultp> Result(static_cast(0)); Result[0][0] = static_cast(1) / (aspect * tanHalfFovy); Result[1][1] = static_cast(1) / (tanHalfFovy); Result[2][2] = - (zFar + zNear) / (zFar - zNear); Result[2][3] = - static_cast(1); Result[3][2] = - (static_cast(2) * zFar * zNear) / (zFar - zNear); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveLH_ZO(T fovy, T aspect, T zNear, T zFar) { assert(abs(aspect - std::numeric_limits::epsilon()) > static_cast(0)); T const tanHalfFovy = tan(fovy / static_cast(2)); mat<4, 4, T, defaultp> Result(static_cast(0)); Result[0][0] = static_cast(1) / (aspect * tanHalfFovy); Result[1][1] = static_cast(1) / (tanHalfFovy); Result[2][2] = zFar / (zFar - zNear); Result[2][3] = static_cast(1); Result[3][2] = -(zFar * zNear) / (zFar - zNear); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveLH_NO(T fovy, T aspect, T zNear, T zFar) { assert(abs(aspect - std::numeric_limits::epsilon()) > static_cast(0)); T const tanHalfFovy = tan(fovy / static_cast(2)); mat<4, 4, T, defaultp> Result(static_cast(0)); Result[0][0] = static_cast(1) / (aspect * tanHalfFovy); Result[1][1] = static_cast(1) / (tanHalfFovy); Result[2][2] = (zFar + zNear) / (zFar - zNear); Result[2][3] = static_cast(1); Result[3][2] = - (static_cast(2) * zFar * zNear) / (zFar - zNear); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveZO(T fovy, T aspect, T zNear, T zFar) { # if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT return perspectiveLH_ZO(fovy, aspect, zNear, zFar); # else return perspectiveRH_ZO(fovy, aspect, zNear, zFar); # endif } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveNO(T fovy, T aspect, T zNear, T zFar) { # if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT return perspectiveLH_NO(fovy, aspect, zNear, zFar); # else return perspectiveRH_NO(fovy, aspect, zNear, zFar); # endif } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveLH(T fovy, T aspect, T zNear, T zFar) { # if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT return perspectiveLH_ZO(fovy, aspect, zNear, zFar); # else return perspectiveLH_NO(fovy, aspect, zNear, zFar); # endif } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveRH(T fovy, T aspect, T zNear, T zFar) { # if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT return perspectiveRH_ZO(fovy, aspect, zNear, zFar); # else return perspectiveRH_NO(fovy, aspect, zNear, zFar); # endif } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspective(T fovy, T aspect, T zNear, T zFar) { # if GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_ZO return perspectiveLH_ZO(fovy, aspect, zNear, zFar); # elif GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_NO return perspectiveLH_NO(fovy, aspect, zNear, zFar); # elif GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_ZO return perspectiveRH_ZO(fovy, aspect, zNear, zFar); # elif GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_NO return perspectiveRH_NO(fovy, aspect, zNear, zFar); # endif } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovRH_ZO(T fov, T width, T height, T zNear, T zFar) { assert(width > static_cast(0)); assert(height > static_cast(0)); assert(fov > static_cast(0)); T const rad = fov; T const h = glm::cos(static_cast(0.5) * rad) / glm::sin(static_cast(0.5) * rad); T const w = h * height / width; ///todo max(width , Height) / min(width , Height)? mat<4, 4, T, defaultp> Result(static_cast(0)); Result[0][0] = w; Result[1][1] = h; Result[2][2] = zFar / (zNear - zFar); Result[2][3] = - static_cast(1); Result[3][2] = -(zFar * zNear) / (zFar - zNear); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovRH_NO(T fov, T width, T height, T zNear, T zFar) { assert(width > static_cast(0)); assert(height > static_cast(0)); assert(fov > static_cast(0)); T const rad = fov; T const h = glm::cos(static_cast(0.5) * rad) / glm::sin(static_cast(0.5) * rad); T const w = h * height / width; ///todo max(width , Height) / min(width , Height)? mat<4, 4, T, defaultp> Result(static_cast(0)); Result[0][0] = w; Result[1][1] = h; Result[2][2] = - (zFar + zNear) / (zFar - zNear); Result[2][3] = - static_cast(1); Result[3][2] = - (static_cast(2) * zFar * zNear) / (zFar - zNear); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovLH_ZO(T fov, T width, T height, T zNear, T zFar) { assert(width > static_cast(0)); assert(height > static_cast(0)); assert(fov > static_cast(0)); T const rad = fov; T const h = glm::cos(static_cast(0.5) * rad) / glm::sin(static_cast(0.5) * rad); T const w = h * height / width; ///todo max(width , Height) / min(width , Height)? mat<4, 4, T, defaultp> Result(static_cast(0)); Result[0][0] = w; Result[1][1] = h; Result[2][2] = zFar / (zFar - zNear); Result[2][3] = static_cast(1); Result[3][2] = -(zFar * zNear) / (zFar - zNear); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovLH_NO(T fov, T width, T height, T zNear, T zFar) { assert(width > static_cast(0)); assert(height > static_cast(0)); assert(fov > static_cast(0)); T const rad = fov; T const h = glm::cos(static_cast(0.5) * rad) / glm::sin(static_cast(0.5) * rad); T const w = h * height / width; ///todo max(width , Height) / min(width , Height)? mat<4, 4, T, defaultp> Result(static_cast(0)); Result[0][0] = w; Result[1][1] = h; Result[2][2] = (zFar + zNear) / (zFar - zNear); Result[2][3] = static_cast(1); Result[3][2] = - (static_cast(2) * zFar * zNear) / (zFar - zNear); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovZO(T fov, T width, T height, T zNear, T zFar) { # if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT return perspectiveFovLH_ZO(fov, width, height, zNear, zFar); # else return perspectiveFovRH_ZO(fov, width, height, zNear, zFar); # endif } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovNO(T fov, T width, T height, T zNear, T zFar) { # if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT return perspectiveFovLH_NO(fov, width, height, zNear, zFar); # else return perspectiveFovRH_NO(fov, width, height, zNear, zFar); # endif } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovLH(T fov, T width, T height, T zNear, T zFar) { # if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT return perspectiveFovLH_ZO(fov, width, height, zNear, zFar); # else return perspectiveFovLH_NO(fov, width, height, zNear, zFar); # endif } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovRH(T fov, T width, T height, T zNear, T zFar) { # if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT return perspectiveFovRH_ZO(fov, width, height, zNear, zFar); # else return perspectiveFovRH_NO(fov, width, height, zNear, zFar); # endif } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFov(T fov, T width, T height, T zNear, T zFar) { # if GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_ZO return perspectiveFovLH_ZO(fov, width, height, zNear, zFar); # elif GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_NO return perspectiveFovLH_NO(fov, width, height, zNear, zFar); # elif GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_ZO return perspectiveFovRH_ZO(fov, width, height, zNear, zFar); # elif GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_NO return perspectiveFovRH_NO(fov, width, height, zNear, zFar); # endif } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> infinitePerspectiveRH(T fovy, T aspect, T zNear) { T const range = tan(fovy / static_cast(2)) * zNear; T const left = -range * aspect; T const right = range * aspect; T const bottom = -range; T const top = range; mat<4, 4, T, defaultp> Result(static_cast(0)); Result[0][0] = (static_cast(2) * zNear) / (right - left); Result[1][1] = (static_cast(2) * zNear) / (top - bottom); Result[2][2] = - static_cast(1); Result[2][3] = - static_cast(1); Result[3][2] = - static_cast(2) * zNear; return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> infinitePerspectiveLH(T fovy, T aspect, T zNear) { T const range = tan(fovy / static_cast(2)) * zNear; T const left = -range * aspect; T const right = range * aspect; T const bottom = -range; T const top = range; mat<4, 4, T, defaultp> Result(T(0)); Result[0][0] = (static_cast(2) * zNear) / (right - left); Result[1][1] = (static_cast(2) * zNear) / (top - bottom); Result[2][2] = static_cast(1); Result[2][3] = static_cast(1); Result[3][2] = - static_cast(2) * zNear; return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> infinitePerspective(T fovy, T aspect, T zNear) { # if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT return infinitePerspectiveLH(fovy, aspect, zNear); # else return infinitePerspectiveRH(fovy, aspect, zNear); # endif } // Infinite projection matrix: http://www.terathon.com/gdc07_lengyel.pdf template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> tweakedInfinitePerspective(T fovy, T aspect, T zNear, T ep) { T const range = tan(fovy / static_cast(2)) * zNear; T const left = -range * aspect; T const right = range * aspect; T const bottom = -range; T const top = range; mat<4, 4, T, defaultp> Result(static_cast(0)); Result[0][0] = (static_cast(2) * zNear) / (right - left); Result[1][1] = (static_cast(2) * zNear) / (top - bottom); Result[2][2] = ep - static_cast(1); Result[2][3] = static_cast(-1); Result[3][2] = (ep - static_cast(2)) * zNear; return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> tweakedInfinitePerspective(T fovy, T aspect, T zNear) { return tweakedInfinitePerspective(fovy, aspect, zNear, epsilon()); } }//namespace glm