1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
|
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Protocol/PciRootBridgeIo.h
```
typedef struct _EFI_PCI_IO_PROTOCOL {
EFI_PCI_IO_PROTOCOL_POLL_IO_MEM PollMem;
EFI_PCI_IO_PROTOCOL_POLL_IO_MEM PollIo;
EFI_PCI_IO_PROTOCOL_ACCESS Mem;
EFI_PCI_IO_PROTOCOL_ACCESS Io;
EFI_PCI_IO_PROTOCOL_CONFIG_ACCESS Pci;
EFI_PCI_IO_PROTOCOL_COPY_MEM CopyMem;
EFI_PCI_IO_PROTOCOL_MAP Map;
EFI_PCI_IO_PROTOCOL_UNMAP Unmap;
EFI_PCI_IO_PROTOCOL_ALLOCATE_BUFFER AllocateBuffer;
EFI_PCI_IO_PROTOCOL_FREE_BUFFER FreeBuffer;
EFI_PCI_IO_PROTOCOL_FLUSH Flush;
EFI_PCI_IO_PROTOCOL_GET_LOCATION GetLocation;
EFI_PCI_IO_PROTOCOL_ATTRIBUTES Attributes;
EFI_PCI_IO_PROTOCOL_GET_BAR_ATTRIBUTES GetBarAttributes;
EFI_PCI_IO_PROTOCOL_SET_BAR_ATTRIBUTES SetBarAttributes;
UINT64 RomSize;
VOID *RomImage;
} EFI_PCI_IO_PROTOCOL;
```
As you can see it is pretty simiilar to `EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL`. Here is a comparision of these two:
```
typedef struct _EFI_PCI_IO_PROTOCOL { typedef struct _EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL {
EFI_HANDLE ParentHandle;
EFI_PCI_IO_PROTOCOL_POLL_IO_MEM PollMem; EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_POLL_IO_MEM PollMem;
EFI_PCI_IO_PROTOCOL_POLL_IO_MEM PollIo; EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_POLL_IO_MEM PollIo;
EFI_PCI_IO_PROTOCOL_ACCESS Mem; EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ACCESS Mem;
EFI_PCI_IO_PROTOCOL_ACCESS Io; EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ACCESS Io;
EFI_PCI_IO_PROTOCOL_CONFIG_ACCESS Pci; EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ACCESS Pci;
EFI_PCI_IO_PROTOCOL_COPY_MEM CopyMem; EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_COPY_MEM CopyMem;
EFI_PCI_IO_PROTOCOL_MAP Map; EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_MAP Map;
EFI_PCI_IO_PROTOCOL_UNMAP Unmap; EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_UNMAP Unmap;
EFI_PCI_IO_PROTOCOL_ALLOCATE_BUFFER AllocateBuffer; EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ALLOCATE_BUFFER AllocateBuffer;
EFI_PCI_IO_PROTOCOL_FREE_BUFFER FreeBuffer; EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_FREE_BUFFER FreeBuffer;
EFI_PCI_IO_PROTOCOL_FLUSH Flush; EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_FLUSH Flush;
EFI_PCI_IO_PROTOCOL_GET_LOCATION GetLocation;
EFI_PCI_IO_PROTOCOL_ATTRIBUTES Attributes;
EFI_PCI_IO_PROTOCOL_GET_BAR_ATTRIBUTES GetBarAttributes; EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_GET_ATTRIBUTES GetAttributes;
EFI_PCI_IO_PROTOCOL_SET_BAR_ATTRIBUTES SetBarAttributes; EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_SET_ATTRIBUTES SetAttributes;
UINT64 RomSize;
VOID *RomImage;
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_CONFIGURATION Configuration;
UINT32 SegmentNumber;
} EFI_PCI_IO_PROTOCOL; } EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL;
```
```
RomSize The size, in bytes, of the ROM image.
RomImage A pointer to the in memory copy of the ROM image. The PCI Bus Driver is responsible
for allocating memory for the ROM image, and copying the contents of the ROM to memory.
The contents of this buffer are either from the PCI option ROM that can be accessed
through the ROM BAR of the PCI controller, or it is from a platformspecific location.
The Attributes() function can be used to determine from which of these two sources
the RomImage buffer was initialized
```
```
GetLocation Retrieves this PCI controller’s current PCI bus number, device
number, and function number
```
```
EFI_PCI_IO_PROTOCOL.GetLocation()
Summary:
Retrieves this PCI controller’s current PCI bus number, device number, and function number.
Prototype:
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_GET_LOCATION) (
IN EFI_PCI_IO_PROTOCOL *This,
OUT UINTN *SegmentNumber,
OUT UINTN *BusNumber,
OUT UINTN *DeviceNumber,
OUT UINTN *FunctionNumber
);
Parameters:
This A pointer to the EFI_PCI_IO_PROTOCOL instance.
SegmentNumber The PCI controller’s current PCI segment number.
BusNumber The PCI controller’s current PCI bus number.
DeviceNumber The PCI controller’s current PCI device number.
FunctionNumber The PCI controller’s current PCI function number.
Description:
The GetLocation() function retrieves a PCI controller’s current location on a PCI Host Bridge. This is
specified by a PCI segment number, PCI bus number, PCI device number, and PCI function number. These
values can be used with the PCI Root Bridge I/O Protocol to perform PCI configuration cycles on the PCI
controller, or any of its peer PCI controller’s on the same PCI Host Bridge.
```
```
FS0:\> DumpPCIroms.efi
Number of PCI devices in the system: 5
00:00.00 - Vendor:8086, Device:1237
00:01.00 - Vendor:8086, Device:7000
00:01.01 - Vendor:8086, Device:7010
00:01.03 - Vendor:8086, Device:7113
00:02.00 - Vendor:1234, Device:1111
Has OptionROM: address=6E91018, size=39424
```
```
FS0:\> dmem 6E91018 30
Memory Address 0000000006E91018 30 Bytes
06E91018: 55 AA 4D E9 AE 55 B4 00-00 00 00 00 00 00 00 00 *U.M..U..........*
06E91028: 00 00 00 00 00 00 00 00-3C 98 00 00 00 00 49 42 *........<.....IB*
06E91038: 4D 00 2E 8B 16 C6 98 85-D2 74 01 EE C2 02 00 66 *M........t.....f*
```
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/Pci22.h
```
#define PCI_EXPANSION_ROM_HEADER_SIGNATURE 0xaa55
...
///
/// Standard PCI Expansion ROM Header
/// Section 13.4.2, Unified Extensible Firmware Interface Specification, Version 2.1
///
typedef struct {
UINT16 Signature; ///< 0xaa55
UINT8 Reserved[0x16];
UINT16 PcirOffset;
} PCI_EXPANSION_ROM_HEADER;
```
https://edk2-docs.gitbook.io/edk-ii-uefi-driver-writer-s-guide/18_pci_driver_design_guidelines/readme.7
# EfiRom
In the next sections will be investigating OptionROM images with the help of BaseTools utility `EfiRom`. It is available in your path once you'll execute `. edksetup.sh` in edk2 folder.
First take a look at `EfiRom` help:
```
$ EfiRom -h
Usage: EfiRom -f VendorId -i DeviceId [options] [file name<s>]
Copyright (c) 2007 - 2018, Intel Corporation. All rights reserved.
Options:
-o FileName, --output FileName
File will be created to store the output content.
-e EfiFileName
EFI PE32 image files.
-ec EfiFileName
EFI PE32 image files and will be compressed.
-b BinFileName
Legacy binary files.
-l ClassCode
Hex ClassCode in the PCI data structure header.
-r Rev Hex Revision in the PCI data structure header.
-n Not to automatically set the LAST bit in the last file.
-f VendorId
Hex PCI Vendor ID for the device OpROM, must be specified
-i DeviceId
One or more hex PCI Device IDs for the device OpROM, must be specified
-p, --pci23
Default layout meets PCI 3.0 specifications
specifying this flag will for a PCI 2.3 layout.
-d, --dump
Dump the headers of an existing option ROM image.
-v, --verbose
Turn on verbose output with informational messages.
--version Show program's version number and exit.
-h, --help
Show this help message and exit.
-q, --quiet
Disable all messages except FATAL ERRORS.
--debug [#,0-9]
Enable debug messages at level #.
```
Complete version of the manual for `EfiRom` is placed at https://github.com/tianocore/edk2/blob/master/BaseTools/UserManuals/EfiRom_Utility_Man_Page.rtf
If you are interested in the source code: https://github.com/tianocore/edk2/tree/master/BaseTools/Source/C/EfiRom
With this tool it is possible to:
- dump Option ROM images
- create Option ROM images from EFI drivers and/or Legacy binary images
Also take a look at tianocore docs:
- https://edk2-docs.gitbook.io/edk-ii-basetools-user-guides/efirom
- https://edk2-docs.gitbook.io/edk-ii-uefi-driver-writer-s-guide/18_pci_driver_design_guidelines/readme.7/1871_efirom_utility
# ipxe rom
Preboot eXecution Environment (PXE) is a standard for booting to an image received via network (https://en.wikipedia.org/wiki/Preboot_Execution_Environment).
To know how to use particular PCI network card for PXE boot, BIOS needs to know some network card internals. But BIOS is not an OS, it is not possible to have drivers for every PCI network card in it. Therefore this problem is solved via OptionROM firmware. PCI network card contains all the necessary code for PXE boot in itself. But not every card have such firmware in itself. In this case you can utilize iPXE project.
iPXE is the open source network boot firmware (https://ipxe.org/). It provides a full PXE implementation enhanced with some additional features. It support various PCI network cards https://ipxe.org/appnote/hardware_drivers.
iPXE can be compiled as EFI application or as EFI/Legacy OptionROM. You can read more about build targets at https://ipxe.org/appnote/buildtargets.
Let's download iPXE:
```
git clone git://git.ipxe.org/ipxe.git
cd ipxe/src
```
Now build some images:
```
$ sudo apt-get install liblzma-dev
$ make bin-x86_64-efi/ipxe.efi # EFI app with all devices
$ make bin-x86_64-efi/8086100e.efirom # EFI ROM vendev: 8086:100e
$ make bin/8086100e.rom # Legacy ROM vendev: 8086:100e
```
You can execute `ipxe.efi` directly from the UEFI shell. It is a simple UEFI application similar to the ones that we create in this series.
Look at the https://github.com/ipxe/ipxe/blob/master/src/image/efi_image.c for source code investigation.
`8086100e.rom` is a Legacy code image PCI Option ROM for `8086:100e` network card
`8086100e.efirom` is an UEFI code image PCI Option ROM for `8086:100e` network card
If you inspect the OptionROM images with `hexdump`, you'll see standard `AA55` and `PCIR` signatures in them.
```
$ hexdump bin/8086100e.rom -C -n 64
00000000 55 aa 86 e9 a2 00 30 00 00 00 00 00 00 00 00 00 |U.....0.........|
00000010 9c 00 00 00 00 00 84 00 1c 00 40 00 50 43 49 52 |..........@.PCIR|
00000020 86 80 0e 10 bf 04 1c 00 03 00 00 02 86 00 01 00 |................|
00000030 00 80 07 00 00 00 00 00 8d b4 00 00 8d b4 00 00 |................|
00000040
$ hexdump bin-x86_64-efi/8086100e.efirom -C -n 64
00000000 55 aa d0 00 f1 0e 00 00 0b 00 64 86 01 00 00 00 |U.........d.....|
00000010 00 00 00 00 00 00 38 00 1c 00 00 00 50 43 49 52 |......8.....PCIR|
00000020 86 80 0e 10 00 00 18 00 00 00 00 02 d0 00 00 00 |................|
00000030 03 80 00 00 87 00 00 00 0d 9e 01 00 00 d2 02 00 |................|
00000040
```
We can even use `EfiRom` on them:
```
$ EfiRom -d bin/8086100e.rom
Image 1 -- Offset 0x0
ROM header contents
Signature 0xAA55
PCIR offset 0x001C
Signature PCIR
Vendor ID 0x8086
Device ID 0x100E
Length 0x001C
Revision 0x0003
DeviceListOffset 0x4BF
Device list contents
0x100E
Class Code 0x020000
Image size 0x10C00
Code revision: 0x0001
MaxRuntimeImageLength 0x07
ConfigUtilityCodeHeaderOffset 0x00
DMTFCLPEntryPointOffset 0x00
Indicator 0x80 (last image)
Code type 0x00
```
If we execute `EfiRom` on a `bin-x86_64-efi/8086100e.efirom`, we would get an error:
```
$ EfiRom -d bin-x86_64-efi/8086100e.efirom
EfiRom: ERROR 1002: No PciRom input file
No *.rom input file
```
The problem is that we `EfiRom` understands only files with `.rom` extension, so change it and use `EfiRom` again:
```
$ cp bin-x86_64-efi/8086100e.efirom bin-x86_64-efi/8086100e.rom
$ EfiRom -d bin-x86_64-efi/8086100e.rom
Image 1 -- Offset 0x0
ROM header contents
Signature 0xAA55
PCIR offset 0x001C
Signature PCIR
Vendor ID 0x8086
Device ID 0x100E
Length 0x0018
Revision 0x0000
DeviceListOffset 0x00
Class Code 0x020000
Image size 0x1A000
Code revision: 0x0000
MaxRuntimeImageLength 0x00
ConfigUtilityCodeHeaderOffset 0x87
DMTFCLPEntryPointOffset 0x00
Indicator 0x80 (last image)
Code type 0x03 (EFI image)
EFI ROM header contents
EFI Signature 0x0EF1
Compression Type 0x0001 (compressed)
Machine type 0x8664 (X64)
Subsystem 0x000B (EFI boot service driver)
EFI image offset 0x0038 (@0x38)
```
EfiRom can't currently combine Option ROM from the EFI ROM images. But it can use EFI PE32 image files as a source for EFI ROM images in the resulting Option ROM. So we have to compile another target:
```
$ make bin-x86_64-efi/8086100e.efidrv
```
Now we can create combined OptionROM image with both Legacy and EFI ROMs.
```
$ EfiRom -f 0x8086 -i 0x100e -b bin/8086100e.rom -ec bin-x86_64-efi/8086100e.efidrv -o bin/8086100e_optionrom.rom
$ EfiRom -d bin/8086100e_optionrom.rom
Image 1 -- Offset 0x0
ROM header contents
Signature 0xAA55
PCIR offset 0x001C
Signature PCIR
Vendor ID 0x8086
Device ID 0x100E
Length 0x001C
Revision 0x0003
DeviceListOffset 0x4BF
Device list contents
0x100E
Class Code 0x020000
Image size 0x10C00
Code revision: 0x0001
MaxRuntimeImageLength 0x07
ConfigUtilityCodeHeaderOffset 0x00
DMTFCLPEntryPointOffset 0x00
Indicator 0x00
Code type 0x00
Image 2 -- Offset 0x10C00
ROM header contents
Signature 0xAA55
PCIR offset 0x001C
Signature PCIR
Vendor ID 0x8086
Device ID 0x100E
Length 0x001C
Revision 0x0003
DeviceListOffset 0x00
Class Code 0x000000
Image size 0x1A000
Code revision: 0x0000
MaxRuntimeImageLength 0x00
ConfigUtilityCodeHeaderOffset 0x00
DMTFCLPEntryPointOffset 0x00
Indicator 0x80 (last image)
Code type 0x03 (EFI image)
EFI ROM header contents
EFI Signature 0x0EF1
Compression Type 0x0001 (compressed)
Machine type 0x8664 (X64)
Subsystem 0x000B (EFI boot service driver)
EFI image offset 0x0038 (@0x10C38)
```
# VGA rom
SeaBIOS is an open-source legacy BIOS implementation that implements the standard BIOS calling interfaces that a typical x86 proprietary BIOS implements (https://github.com/coreboot/seabios).
SeaVGABIOS is a sub-project of the SeaBIOS project - it is an open source implementation of a 16bit X86 VGA BIOS
(https://github.com/coreboot/seabios/blob/master/docs/SeaVGABIOS.md). In other words it builds a Legacy Option ROM for a PCI graphic device.
SeaBIOS uses Kconfig system for the build configuration. Main options for the VGA BIOS are placed under https://github.com/coreboot/seabios/blob/master/vgasrc/Kconfig In this file you can see that one of the options is a OptionROM with a Vendor/Device pair as `1234:1111`. Exactly the one that we saw at QEMU:
```
config VGA_VID
depends on VGA_PCI
hex
prompt "PCI Vendor ID" if OVERRIDE_PCI_ID
default 0x1013 if VGA_CIRRUS
default 0x1002 if VGA_ATI
default 0x1234 if VGA_BOCHS_STDVGA
default 0x15ad if VGA_BOCHS_VMWARE
default 0x1b36 if VGA_BOCHS_QXL
default 0x1af4 if VGA_BOCHS_VIRTIO
default 0x100b if VGA_GEODEGX2
default 0x1022 if VGA_GEODELX
default 0x1234 if DISPLAY_BOCHS <--------------
default 0x0000
help
Vendor ID for the PCI ROM
config VGA_DID
depends on VGA_PCI
hex
prompt "PCI Vendor ID" if OVERRIDE_PCI_ID
default 0x00b8 if VGA_CIRRUS
default 0x5159 if VGA_ATI
default 0x1111 if VGA_BOCHS_STDVGA
default 0x0405 if VGA_BOCHS_VMWARE
default 0x0100 if VGA_BOCHS_QXL
default 0x1050 if VGA_BOCHS_VIRTIO
default 0x0030 if VGA_GEODEGX2
default 0x2081 if VGA_GEODELX
default 0x1111 if DISPLAY_BOCHS <---------------
default 0x0000
help
Device ID for the PCI ROM
```
If you wonder what is `DISPLAY_BOCHS`, here is a help for this option:
```
config DISPLAY_BOCHS
depends on QEMU
bool "qemu bochs-display support"
select VGA_EMULATE_TEXT
help
Build support for the qemu bochs-display device, which
is basically qemu stdvga without the legacy vga
emulation, supporting only 16+32 bpp VESA video modes
in a linear framebuffer. So this uses cbvga text mode
emulation.
The bochs-display device is available in qemu
v3.0+. The vgabios works with the qemu stdvga too (use
"qemu -device VGA,romfile=/path/to/vgabios.bin")".
```
Let's build this SeaBIOS VGA image. Install necessary packages, download SeaBIOS source and perfrorm build configuration:
```
$ sudo apt-get install python
$ git clone https://github.com/coreboot/seabios.git
$ cd seabios
$ make menuconfig
```
In a menuconfig select:
```
VGA ROM ---> VGA Hardware Type (qemu bochs-display support)
```
After that execute:
```
$ make
```
After the build resulting VGA Option ROM would be at path `out/vgabios.bin`. As `EfiRom` expects ROM files to have a `*.rom` extension, create a copy of a file with such extension. After that execute `dump` command on this file:
```
$ cp out/vgabios.bin out/vgabios.rom
$ EfiRom -d out/vgabios.rom
Image 1 -- Offset 0x0
ROM header contents
Signature 0xAA55
PCIR offset 0x6E00
Signature PCIR
Vendor ID 0x1234
Device ID 0x1111
Length 0x0018
Revision 0x0000
DeviceListOffset 0x00
Class Code 0x030000
Image size 0x7000
Code revision: 0x0001
MaxRuntimeImageLength 0x00
ConfigUtilityCodeHeaderOffset 0x9066
DMTFCLPEntryPointOffset 0x9066
Indicator 0x80 (last image)
Code type 0x00
```
This is the info similar to the one that we saw with our utility on a working QEMU system. You can see that PCI vendor/device pair is set to `1234:1111`.
# How QEMU gets these OptionROMs
The main Makefile in QEMU responsible for OptionROM image creation is https://github.com/qemu/qemu/blob/master/roms/Makefile
In this Makefile you can see how:
- `seavgabios-%` target is used for the creation of a Legacy SeaVGABIOS OptionROM
- `efi-rom-%` target is used for the creation of an OptionROM with both Legacy and UEFI iPXE code images (it even uses `EfiRom` utility from edk2 for this purpose)
|