aboutsummaryrefslogtreecommitdiffstats
path: root/src/include/glm/ext/quaternion_exponential.inl
diff options
context:
space:
mode:
Diffstat (limited to 'src/include/glm/ext/quaternion_exponential.inl')
-rw-r--r--src/include/glm/ext/quaternion_exponential.inl85
1 files changed, 85 insertions, 0 deletions
diff --git a/src/include/glm/ext/quaternion_exponential.inl b/src/include/glm/ext/quaternion_exponential.inl
new file mode 100644
index 0000000..7f063e0
--- /dev/null
+++ b/src/include/glm/ext/quaternion_exponential.inl
@@ -0,0 +1,85 @@
+#include "scalar_constants.hpp"
+
+namespace glm
+{
+ template<typename T, qualifier Q>
+ GLM_FUNC_QUALIFIER qua<T, Q> exp(qua<T, Q> const& q)
+ {
+ vec<3, T, Q> u(q.x, q.y, q.z);
+ T const Angle = glm::length(u);
+ if (Angle < epsilon<T>())
+ return qua<T, Q>();
+
+ vec<3, T, Q> const v(u / Angle);
+ return qua<T, Q>(cos(Angle), sin(Angle) * v);
+ }
+
+ template<typename T, qualifier Q>
+ GLM_FUNC_QUALIFIER qua<T, Q> log(qua<T, Q> const& q)
+ {
+ vec<3, T, Q> u(q.x, q.y, q.z);
+ T Vec3Len = length(u);
+
+ if (Vec3Len < epsilon<T>())
+ {
+ if(q.w > static_cast<T>(0))
+ return qua<T, Q>(log(q.w), static_cast<T>(0), static_cast<T>(0), static_cast<T>(0));
+ else if(q.w < static_cast<T>(0))
+ return qua<T, Q>(log(-q.w), pi<T>(), static_cast<T>(0), static_cast<T>(0));
+ else
+ return qua<T, Q>(std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity());
+ }
+ else
+ {
+ T t = atan(Vec3Len, T(q.w)) / Vec3Len;
+ T QuatLen2 = Vec3Len * Vec3Len + q.w * q.w;
+ return qua<T, Q>(static_cast<T>(0.5) * log(QuatLen2), t * q.x, t * q.y, t * q.z);
+ }
+ }
+
+ template<typename T, qualifier Q>
+ GLM_FUNC_QUALIFIER qua<T, Q> pow(qua<T, Q> const& x, T y)
+ {
+ //Raising to the power of 0 should yield 1
+ //Needed to prevent a division by 0 error later on
+ if(y > -epsilon<T>() && y < epsilon<T>())
+ return qua<T, Q>(1,0,0,0);
+
+ //To deal with non-unit quaternions
+ T magnitude = sqrt(x.x * x.x + x.y * x.y + x.z * x.z + x.w *x.w);
+
+ T Angle;
+ if(abs(x.w / magnitude) > cos_one_over_two<T>())
+ {
+ //Scalar component is close to 1; using it to recover angle would lose precision
+ //Instead, we use the non-scalar components since sin() is accurate around 0
+
+ //Prevent a division by 0 error later on
+ T VectorMagnitude = x.x * x.x + x.y * x.y + x.z * x.z;
+ if (glm::abs(VectorMagnitude - static_cast<T>(0)) < glm::epsilon<T>()) {
+ //Equivalent to raising a real number to a power
+ return qua<T, Q>(pow(x.w, y), 0, 0, 0);
+ }
+
+ Angle = asin(sqrt(VectorMagnitude) / magnitude);
+ }
+ else
+ {
+ //Scalar component is small, shouldn't cause loss of precision
+ Angle = acos(x.w / magnitude);
+ }
+
+ T NewAngle = Angle * y;
+ T Div = sin(NewAngle) / sin(Angle);
+ T Mag = pow(magnitude, y - static_cast<T>(1));
+ return qua<T, Q>(cos(NewAngle) * magnitude * Mag, x.x * Div * Mag, x.y * Div * Mag, x.z * Div * Mag);
+ }
+
+ template<typename T, qualifier Q>
+ GLM_FUNC_QUALIFIER qua<T, Q> sqrt(qua<T, Q> const& x)
+ {
+ return pow(x, static_cast<T>(0.5));
+ }
+}//namespace glm
+
+