aboutsummaryrefslogtreecommitdiffstats
path: root/src/include/glm/gtx/intersect.inl
blob: fc44f25a1891a40f03e9d563c011cef56533f527 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
/// @ref gtx_intersect

namespace glm
{
	template<typename genType>
	GLM_FUNC_QUALIFIER bool intersectRayPlane
	(
		genType const& orig, genType const& dir,
		genType const& planeOrig, genType const& planeNormal,
		typename genType::value_type & intersectionDistance
	)
	{
		typename genType::value_type d = glm::dot(dir, planeNormal);
		typename genType::value_type Epsilon = std::numeric_limits<typename genType::value_type>::epsilon();

		if(glm::abs(d) > Epsilon)  // if dir and planeNormal are not perpendicular
		{
			typename genType::value_type const tmp_intersectionDistance = 	glm::dot(planeOrig - orig, planeNormal) / d;
			if (tmp_intersectionDistance > static_cast<typename genType::value_type>(0)) { // allow only intersections
				intersectionDistance = tmp_intersectionDistance;
				return true;
			}
		}

		return false;
	}

	template<typename T, qualifier Q>
	GLM_FUNC_QUALIFIER bool intersectRayTriangle
	(
		vec<3, T, Q> const& orig, vec<3, T, Q> const& dir,
		vec<3, T, Q> const& vert0, vec<3, T, Q> const& vert1, vec<3, T, Q> const& vert2,
		vec<2, T, Q>& baryPosition, T& distance
	)
	{
		// find vectors for two edges sharing vert0
		vec<3, T, Q> const edge1 = vert1 - vert0;
		vec<3, T, Q> const edge2 = vert2 - vert0;

		// begin calculating determinant - also used to calculate U parameter
		vec<3, T, Q> const p = glm::cross(dir, edge2);

		// if determinant is near zero, ray lies in plane of triangle
		T const det = glm::dot(edge1, p);

		vec<3, T, Q> Perpendicular(0);

		if(det > std::numeric_limits<T>::epsilon())
		{
			// calculate distance from vert0 to ray origin
			vec<3, T, Q> const dist = orig - vert0;

			// calculate U parameter and test bounds
			baryPosition.x = glm::dot(dist, p);
			if(baryPosition.x < static_cast<T>(0) || baryPosition.x > det)
				return false;

			// prepare to test V parameter
			Perpendicular = glm::cross(dist, edge1);

			// calculate V parameter and test bounds
			baryPosition.y = glm::dot(dir, Perpendicular);
			if((baryPosition.y < static_cast<T>(0)) || ((baryPosition.x + baryPosition.y) > det))
				return false;
		}
		else if(det < -std::numeric_limits<T>::epsilon())
		{
			// calculate distance from vert0 to ray origin
			vec<3, T, Q> const dist = orig - vert0;

			// calculate U parameter and test bounds
			baryPosition.x = glm::dot(dist, p);
			if((baryPosition.x > static_cast<T>(0)) || (baryPosition.x < det))
				return false;

			// prepare to test V parameter
			Perpendicular = glm::cross(dist, edge1);

			// calculate V parameter and test bounds
			baryPosition.y = glm::dot(dir, Perpendicular);
			if((baryPosition.y > static_cast<T>(0)) || (baryPosition.x + baryPosition.y < det))
				return false;
		}
		else
			return false; // ray is parallel to the plane of the triangle

		T inv_det = static_cast<T>(1) / det;

		// calculate distance, ray intersects triangle
		distance = glm::dot(edge2, Perpendicular) * inv_det;
		baryPosition *= inv_det;

		return true;
	}

	template<typename genType>
	GLM_FUNC_QUALIFIER bool intersectLineTriangle
	(
		genType const& orig, genType const& dir,
		genType const& vert0, genType const& vert1, genType const& vert2,
		genType & position
	)
	{
		typename genType::value_type Epsilon = std::numeric_limits<typename genType::value_type>::epsilon();

		genType edge1 = vert1 - vert0;
		genType edge2 = vert2 - vert0;

		genType Perpendicular = cross(dir, edge2);

		float det = dot(edge1, Perpendicular);

		if (det > -Epsilon && det < Epsilon)
			return false;
		typename genType::value_type inv_det = typename genType::value_type(1) / det;

		genType Tengant = orig - vert0;

		position.y = dot(Tengant, Perpendicular) * inv_det;
		if (position.y < typename genType::value_type(0) || position.y > typename genType::value_type(1))
			return false;

		genType Cotengant = cross(Tengant, edge1);

		position.z = dot(dir, Cotengant) * inv_det;
		if (position.z < typename genType::value_type(0) || position.y + position.z > typename genType::value_type(1))
			return false;

		position.x = dot(edge2, Cotengant) * inv_det;

		return true;
	}

	template<typename genType>
	GLM_FUNC_QUALIFIER bool intersectRaySphere
	(
		genType const& rayStarting, genType const& rayNormalizedDirection,
		genType const& sphereCenter, const typename genType::value_type sphereRadiusSquered,
		typename genType::value_type & intersectionDistance
	)
	{
		typename genType::value_type Epsilon = std::numeric_limits<typename genType::value_type>::epsilon();
		genType diff = sphereCenter - rayStarting;
		typename genType::value_type t0 = dot(diff, rayNormalizedDirection);
		typename genType::value_type dSquared = dot(diff, diff) - t0 * t0;
		if( dSquared > sphereRadiusSquered )
		{
			return false;
		}
		typename genType::value_type t1 = sqrt( sphereRadiusSquered - dSquared );
		intersectionDistance = t0 > t1 + Epsilon ? t0 - t1 : t0 + t1;
		return intersectionDistance > Epsilon;
	}

	template<typename genType>
	GLM_FUNC_QUALIFIER bool intersectRaySphere
	(
		genType const& rayStarting, genType const& rayNormalizedDirection,
		genType const& sphereCenter, const typename genType::value_type sphereRadius,
		genType & intersectionPosition, genType & intersectionNormal
	)
	{
		typename genType::value_type distance;
		if( intersectRaySphere( rayStarting, rayNormalizedDirection, sphereCenter, sphereRadius * sphereRadius, distance ) )
		{
			intersectionPosition = rayStarting + rayNormalizedDirection * distance;
			intersectionNormal = (intersectionPosition - sphereCenter) / sphereRadius;
			return true;
		}
		return false;
	}

	template<typename genType>
	GLM_FUNC_QUALIFIER bool intersectLineSphere
	(
		genType const& point0, genType const& point1,
		genType const& sphereCenter, typename genType::value_type sphereRadius,
		genType & intersectionPoint1, genType & intersectionNormal1,
		genType & intersectionPoint2, genType & intersectionNormal2
	)
	{
		typename genType::value_type Epsilon = std::numeric_limits<typename genType::value_type>::epsilon();
		genType dir = normalize(point1 - point0);
		genType diff = sphereCenter - point0;
		typename genType::value_type t0 = dot(diff, dir);
		typename genType::value_type dSquared = dot(diff, diff) - t0 * t0;
		if( dSquared > sphereRadius * sphereRadius )
		{
			return false;
		}
		typename genType::value_type t1 = sqrt( sphereRadius * sphereRadius - dSquared );
		if( t0 < t1 + Epsilon )
			t1 = -t1;
		intersectionPoint1 = point0 + dir * (t0 - t1);
		intersectionNormal1 = (intersectionPoint1 - sphereCenter) / sphereRadius;
		intersectionPoint2 = point0 + dir * (t0 + t1);
		intersectionNormal2 = (intersectionPoint2 - sphereCenter) / sphereRadius;
		return true;
	}
}//namespace glm