1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
|
/// @ref gtx_quaternion
#include <limits>
#include "../gtc/constants.hpp"
namespace glm
{
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR qua<T, Q> quat_identity()
{
return qua<T, Q>(static_cast<T>(1), static_cast<T>(0), static_cast<T>(0), static_cast<T>(0));
}
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<3, T, Q> cross(vec<3, T, Q> const& v, qua<T, Q> const& q)
{
return inverse(q) * v;
}
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<3, T, Q> cross(qua<T, Q> const& q, vec<3, T, Q> const& v)
{
return q * v;
}
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER qua<T, Q> squad
(
qua<T, Q> const& q1,
qua<T, Q> const& q2,
qua<T, Q> const& s1,
qua<T, Q> const& s2,
T const& h)
{
return mix(mix(q1, q2, h), mix(s1, s2, h), static_cast<T>(2) * (static_cast<T>(1) - h) * h);
}
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER qua<T, Q> intermediate
(
qua<T, Q> const& prev,
qua<T, Q> const& curr,
qua<T, Q> const& next
)
{
qua<T, Q> invQuat = inverse(curr);
return exp((log(next * invQuat) + log(prev * invQuat)) / static_cast<T>(-4)) * curr;
}
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<3, T, Q> rotate(qua<T, Q> const& q, vec<3, T, Q> const& v)
{
return q * v;
}
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<4, T, Q> rotate(qua<T, Q> const& q, vec<4, T, Q> const& v)
{
return q * v;
}
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER T extractRealComponent(qua<T, Q> const& q)
{
T w = static_cast<T>(1) - q.x * q.x - q.y * q.y - q.z * q.z;
if(w < T(0))
return T(0);
else
return -sqrt(w);
}
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR T length2(qua<T, Q> const& q)
{
return q.x * q.x + q.y * q.y + q.z * q.z + q.w * q.w;
}
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER qua<T, Q> shortMix(qua<T, Q> const& x, qua<T, Q> const& y, T const& a)
{
if(a <= static_cast<T>(0)) return x;
if(a >= static_cast<T>(1)) return y;
T fCos = dot(x, y);
qua<T, Q> y2(y); //BUG!!! qua<T> y2;
if(fCos < static_cast<T>(0))
{
y2 = -y;
fCos = -fCos;
}
//if(fCos > 1.0f) // problem
T k0, k1;
if(fCos > (static_cast<T>(1) - epsilon<T>()))
{
k0 = static_cast<T>(1) - a;
k1 = static_cast<T>(0) + a; //BUG!!! 1.0f + a;
}
else
{
T fSin = sqrt(T(1) - fCos * fCos);
T fAngle = atan(fSin, fCos);
T fOneOverSin = static_cast<T>(1) / fSin;
k0 = sin((static_cast<T>(1) - a) * fAngle) * fOneOverSin;
k1 = sin((static_cast<T>(0) + a) * fAngle) * fOneOverSin;
}
return qua<T, Q>(
k0 * x.w + k1 * y2.w,
k0 * x.x + k1 * y2.x,
k0 * x.y + k1 * y2.y,
k0 * x.z + k1 * y2.z);
}
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER qua<T, Q> fastMix(qua<T, Q> const& x, qua<T, Q> const& y, T const& a)
{
return glm::normalize(x * (static_cast<T>(1) - a) + (y * a));
}
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER qua<T, Q> rotation(vec<3, T, Q> const& orig, vec<3, T, Q> const& dest)
{
T cosTheta = dot(orig, dest);
vec<3, T, Q> rotationAxis;
if(cosTheta >= static_cast<T>(1) - epsilon<T>()) {
// orig and dest point in the same direction
return quat_identity<T,Q>();
}
if(cosTheta < static_cast<T>(-1) + epsilon<T>())
{
// special case when vectors in opposite directions :
// there is no "ideal" rotation axis
// So guess one; any will do as long as it's perpendicular to start
// This implementation favors a rotation around the Up axis (Y),
// since it's often what you want to do.
rotationAxis = cross(vec<3, T, Q>(0, 0, 1), orig);
if(length2(rotationAxis) < epsilon<T>()) // bad luck, they were parallel, try again!
rotationAxis = cross(vec<3, T, Q>(1, 0, 0), orig);
rotationAxis = normalize(rotationAxis);
return angleAxis(pi<T>(), rotationAxis);
}
// Implementation from Stan Melax's Game Programming Gems 1 article
rotationAxis = cross(orig, dest);
T s = sqrt((T(1) + cosTheta) * static_cast<T>(2));
T invs = static_cast<T>(1) / s;
return qua<T, Q>(
s * static_cast<T>(0.5f),
rotationAxis.x * invs,
rotationAxis.y * invs,
rotationAxis.z * invs);
}
}//namespace glm
|